

Final Assessment

Submitted To:

Umme Khadiza Tithi

Lecturer, Department of Computer Science & Engineering

Victoria University of Bangladesh

Submission Date: 07 February, 2024

Md Bakhtiar Chowdhury

ID: 2121210061

Department: CSE

Semester: Fall 2023

Batch: 21th

Course Title: Compiler

Course Code: CSI 411

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

2 | P a g e

Answer to the question no 1(a)

Define types and phases of compiler?

System Design is a crucial phase in the software development lifecycle that follows

system analysis. It involves creating a detailed blueprint or specification for the proposed

system based on the requirements identified during the analysis phase. The main goal of

system design is to define how the system will be structured, how its components will

interact, and how it will fulfill the identified user needs and business objectives.

A compiler is a software tool that translates source code written in a high-level

programming language into machine code or another intermediate code that can be

executed by a computer. The compilation process is typically divided into several phases,

and each phase performs specific tasks to transform the source code into executable

code. Here's an overview of the phases and types of a compiler:

Types of Compilers:

Single-pass Compiler: This type of compiler processes the source code linearly, in a

single pass, from start to finish. It reads the source code once and generates the target

code without revisiting the same code.

Multi-pass Compiler: In contrast to a single-pass compiler, a multi-pass compiler goes

through the source code multiple times. It performs several passes to handle various

stages of compilation, often resulting in more efficient code generation and optimization.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

3 | P a g e

Phases of a Compiler:

Lexical Analysis (Scanner): This is the first phase where the source code is read

character by character and grouped into meaningful tokens such as keywords, identifiers,

constants, and operators. The output is a stream of tokens, which is passed to the next

phase.

Syntax Analysis (Parser): Also known as the parsing phase, this stage checks the syntax

of the code by analyzing the structure of tokens to ensure they conform to the rules of

the programming language specified by its grammar. It produces a parse tree or abstract

syntax tree (AST) as output.

Semantic Analysis: This phase checks the meaning of the statements in the code. It

verifies if the code follows the language semantics, type checks, and performs various

semantic checks. It also generates intermediate code or an intermediate representation.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

4 | P a g e

Intermediate Code Generation: This phase produces an intermediate representation (IR)

of the source code. This representation is independent of the source and target

languages, making it easier for subsequent phases to perform optimizations.

Code Optimization: The compiler performs various optimizations on the intermediate

code to improve the efficiency of the generated code. Optimization techniques include

dead code elimination, constant folding, loop optimization, etc.

Code Generation: In this phase, the optimized intermediate code is translated into the

target machine code or another form of executable code specific to the target platform

or architecture.

Symbol Table Management: Throughout the compilation process, the compiler

maintains a symbol table that stores information about identifiers (variables, functions,

etc.) in the code, such as their names, types, memory locations, etc.

These phases work together systematically to convert human-readable source code into

machine-executable code. Each phase has its specific tasks and dependencies on the

output of the previous phase to ensure the correctness and efficiency of the final

generated code.

Answer to the question no 1(b)

Advantages and Disadvantages of Compiler design?

Advantages of Compiler Design:

• Efficiency: Compiled code tends to execute faster than interpreted code because

it's translated directly into machine code or a lower-level representation specific

to the target platform. This optimized code leads to improved performance.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

5 | P a g e

• Portability: Once compiled, the resulting executable code can be run on different

machines without the need for the original source code or the compiler itself, as

long as there's compatibility with the target platform. This enhances the software's

portability.

• Optimization: Compilers perform various optimization techniques during

compilation, such as code elimination, loop optimization, and register allocation.

These optimizations enhance the efficiency and performance of the generated

code.

• Error Detection: Compilers check for syntax errors, semantic errors, and

sometimes even certain types of logical errors during the compilation process.

This helps in identifying and fixing issues before execution, reducing runtime

errors.

• Security: Compiling source code into machine code or intermediate code makes

it harder for others to reverse-engineer or access the original source code, thereby

offering a level of security to the intellectual property.

Disadvantages of Compiler Design:

• Complexity: Building a compiler is a complex and challenging task that requires a

deep understanding of programming languages, algorithms, and computer

architecture. Designing a robust and efficient compiler demands significant

expertise and time.

• Compilation Time: Compiling large programs or complex codebases can take a

considerable amount of time. This extended compilation time can become a

bottleneck, especially during the development phase when quick iterations and

testing are essential.

• Debugging: Detecting and fixing errors in compiled code might be more

challenging than in interpreted code. Debugging compiled programs often involves

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

6 | P a g e

dealing with low-level representations, making it harder to trace issues back to the

original source code.

• Platform Dependency: While compiled code is generally portable, there might still

be dependencies on specific platforms or environments. This can affect the

portability of the compiled executable, making it less versatile than interpreted

code in some cases.

• Initial Overhead: Developing a compiler requires resources, time, and expertise

upfront. Unlike interpreters that can directly execute source code, compilers need

to be built before they can be used, which can be an initial investment.

Understanding these advantages and disadvantages helps in evaluating when and where

to use compiled languages, considering factors like performance, portability,

development effort, debugging capabilities, and security requirements for a given project

or application.

Answer to the question no 1(c)

Why to learn compiler design? Explain Top-down and Bottom-up parsing?

Learning compiler design offers several valuable benefits for computer science students,

programmers, and software engineers. Here are some compelling reasons why learning

compiler design is beneficial:

Understanding of Programming Languages: Compiler design provides a deep

understanding of programming languages and their underlying structures. This

knowledge is fundamental for developing a strong grasp of language syntax, semantics,

grammar, and design principles.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

7 | P a g e

Enhanced Problem-Solving Skills: Building a compiler involves solving complex problems

related to lexical analysis, parsing, code generation, and optimization. This process helps

in honing problem-solving abilities and algorithmic thinking.

Insight into Software Development: Learning about compilers gives insight into how

software is processed and executed. It provides a broader perspective on the entire

software development lifecycle and improves overall software engineering skills.

Performance Optimization Techniques: Compiler design involves optimization

techniques aimed at improving program efficiency, such as code optimization and

resource utilization. This knowledge is beneficial for writing more efficient and optimized

code.

Advanced Understanding of Computer Architecture: Understanding compilers helps in

comprehending computer architecture better. It provides insights into how different

hardware and software components interact, leading to better software-hardware co-

design.

Career Opportunities: Proficiency in compiler design can open up various career

opportunities in fields like software engineering, system programming, language

development, and research in compiler technology.

Innovation and Language Development: Knowledge of compiler design can inspire

innovation in programming languages. It equips individuals to design new languages,

develop language extensions, or contribute to language standards and improvements.

Debugging and Troubleshooting Skills: Learning about compilers enhances debugging

skills as it involves identifying and fixing errors at different stages of compilation. This

skill is valuable for all software development tasks.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

8 | P a g e

Contribution to Open Source and Academic Research: Proficiency in compiler design

enables individuals to contribute to open-source compiler projects or engage in academic

research in compiler theory and optimization techniques.

Foundation for Further Learning: Compiler design serves as a foundational subject in

computer science. It provides a solid basis for delving deeper into related areas like

formal languages, automata theory, software engineering, and more.

Overall, learning compiler design offers a blend of theoretical knowledge and practical

skills that are highly beneficial for computer scientists, programmers, and anyone

interested in understanding how programming languages are translated into executable

code, leading to improved programming expertise and problem-solving capabilities.

Top-down and bottom-up parsing are two approaches used in syntax analysis (parsing)

of programming languages to construct the parse tree or abstract syntax tree (AST) from

a given input string according to the grammar rules of the language.

Top-Down Parsing:

Approach: In top-down parsing, the process starts from the root of the parse tree (or AST)

and works its way down to the leaves following a top-to-bottom approach. It begins with

the start symbol of the grammar and attempts to match the input string by recursively

applying production rules and selecting the appropriate rule based on the next expected

input.

Method: The commonly used top-down parsing methods include Recursive Descent

Parsing and LL (left-to-right, leftmost derivation) parsing techniques. Recursive descent

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

9 | P a g e

parsing involves writing separate recursive procedures or functions for each non-terminal

symbol in the grammar to match the input.

Advantages: Top-down parsing is relatively straightforward to implement, especially if

the grammar is LL(1) (i.e., a specific form of context-free grammar that can predictively

select the correct production rule based on the next input symbol). It aligns well with how

programmers often think about structuring their code.

Limitations: Limited in handling left-recursive or ambiguous grammars without

modifications. It might suffer from backtracking issues in cases where multiple

alternatives need to be explored.

Bottom-Up Parsing:

Approach: In bottom-up parsing, the process starts from the input string and works

upwards to construct the parse tree (or AST). It begins by identifying the smallest

substrings in the input that correspond to terminal symbols and applies reduction rules

in reverse to form larger constituents (non-terminal symbols) until it reaches the start

symbol.

Method: The commonly used bottom-up parsing method is the LR (left-to-right, rightmost

derivation) parsing technique. LR parsers use a parsing table and a stack-based approach

to perform shift (move input to stack) and reduce (apply production rule) operations until

the entire input is reduced to the start symbol.

Advantages: Bottom-up parsing can handle a broader class of grammars, including left-

recursive and ambiguous grammars, with the use of powerful parsing algorithms like LR

parsers. It is efficient in constructing the parse tree from the input.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

10 | P a g e

Limitations: More complex to implement compared to top-down parsing. The parser

needs a parsing table generated from the grammar, and the parsing process might not

align as intuitively with human-readable code.

In summary, top-down parsing starts from the root and expands toward the leaves, while

bottom-up parsing starts from the leaves and builds upwards to form the root. Both

approaches have their strengths and weaknesses, and the choice between them depends

on factors like grammar characteristics, ease of implementation, and efficiency

requirements.

Answer to the question no 2(a)

Define Language processing System?

A Language Processing System (LPS) refers to a comprehensive set of software tools,

components, and processes used to analyze, manipulate, translate, or interpret human

languages. It encompasses various stages and functionalities involved in handling

natural language input and output in computational systems. These systems are

designed to understand, generate, and process human languages, enabling interactions

between humans and computers.

The programs that are written in high-level languages (e.g., C, C++, Python, Java, etc.) are

passed into a sequence of devices and operating system (OS) components to generate

the desired machine code that can be understandable by machine, known as a Language

Processing System.

The different components of the Language processing system are given in the below

diagram.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

11 | P a g e

Components of Language Processing System

• Preprocessor

• Compiler

• Assembler

• Linker

• Loader

• Executable Code

An LPS typically consists of several key components:

Natural Language Understanding (NLU): This component involves parsing and

understanding human language input. It includes tasks such as lexical analysis (breaking

down text into tokens), syntactic analysis (parsing the structure of sentences), semantic

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

12 | P a g e

analysis (extracting meaning), and discourse analysis (interpreting the context of

sentences in a larger conversation or text).

Natural Language Generation (NLG): NLG deals with the production of human-readable

text or speech from structured data or instructions. It involves converting machine

representations into coherent sentences or discourse understandable to humans.

Language Translation: Language processing systems might include components for

translation between different languages. Translation involves converting text or speech

from one language to another while preserving the meaning and context as much as

possible.

Speech Recognition and Synthesis: Some language processing systems incorporate

components for speech recognition (converting spoken language to text) and speech

synthesis (producing spoken language from text).

Information Retrieval and Extraction: These components focus on retrieving relevant

information from text or documents and extracting specific data or knowledge, which can

be used for various applications like search engines, information summarization, or data

mining.

Dialog Management: In systems involving interactions with users, dialog management

components handle the flow of conversation or interaction between the user and the

system. This includes understanding user intents, maintaining context, and generating

appropriate responses.

Machine Learning and AI Techniques: Many language processing systems leverage

machine learning and artificial intelligence techniques to improve their accuracy and

performance. These techniques involve training models on large amounts of language

data to enhance language understanding, translation, or other tasks.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

13 | P a g e

Language Processing Systems find applications in various domains such as natural

language interfaces for computer systems, machine translation, sentiment analysis,

virtual assistants, information retrieval, automated customer support, and more. These

systems aim to bridge the gap between human language and machine understanding,

enabling effective communication and interaction between users and computational

systems.

Answer to the question no 2(b)

What is Cross Compiler?

Compilers are the tool used to translate high-level programming language to low-level

programming language. The simple compiler works in one system only, but what will

happen if we need a compiler that can compile code from another platform, to perform

such compilation, the cross compiler is introduced. In this article, we are going to discuss

cross-compiler.

A cross compiler is a compiler capable of creating executable code for a platform other

than the one on which the compiler is running. For example, a cross compiler executes

on machine X and produces machine code for machine Y.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

14 | P a g e

Where is the cross compiler used?

In bootstrapping, a cross-compiler is used for transitioning to a new platform. When

developing software for a new platform, a cross-compiler is used to compile necessary

tools such as the operating system and a native compiler.

For microcontrollers, we use cross compiler because it doesn’t support an operating

system.

It is useful for embedded computers which are with limited computing resources.

To compile for a platform where it is not practical to do the compiling, a cross-compiler

is used.

When direct compilation on the target platform is not infeasible, so we can use the cross

compiler.

It helps to keep the target environment separate from the built environment.

Answer to the question no 2(c)

What is Source Compiler?

A Source-to-Source Compiler is a technology used to translate between programming

languages. More specifically, it takes the source code of a programmed written in one

programming language as its input and generates the equivalent source code in a

different programming language. Translation can be done through specific software that

performs syntax and lexical analysis.

A source compiler, often simply referred to as a compiler, is a software tool that

translates source code written in a high-level programming language into machine code

or another form of executable code that a computer can understand and execute.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 411, Course Title: Compiler

15 | P a g e

When you write a program in a high-level programming language like C, C++, Java, Python,

or others, it is written in a human-readable format that uses syntax and constructs

familiar to programmers. However, computers don't directly understand these high-level

languages. Thus, a source compiler translates this human-readable code into a lower-

level representation or machine code that the computer's hardware can execute.

The source code is processed by the compiler in multiple phases, starting from lexical

analysis (breaking code into tokens), syntax analysis (parsing the structure), semantic

analysis (checking meaning and context), generating intermediate code or an abstract

representation, performing optimizations, and finally producing the target code.

The resulting output could be machine code specific to the processor architecture or an

intermediate code that is further processed by an interpreter or a just-in-time (JIT)

compiler during runtime.

In summary, a source compiler takes source code written in a high-level programming

language and translates it into an equivalent form that can be executed by the computer's

hardware, making the program understandable and executable by the machine.

>>>>>>END<<<<<<

