
Mid Assessment│Fall - 2023

Md. Shafayet Hossain

CSE - 21st Batch │ Course Code: CSI - 411

Course Title: Compiler | ID: 2121210071

Answer to the Question no- 1

(a)

Types of Compiler

There are four types of compiler-

1. Cross Compilers: They produce an executable machine code for a platform but, this
platform is not the one on which the compiler is running.

2. Bootstrap Compilers: These compilers are written in a programming language that they
have to compile.

3. Source to source/trans-compiler: These compilers convert the source code of one
programming language to the source code of another programming language.

4. De-compiler: Basically, it is not a compiler. It is just the reverse of the compiler. It
converts the machine code into high-level language.

Phases of Compiler-
The typical phases of a compiler are:

1. Lexical Analysis: The first phase of a compiler is lexical analysis, also known as scanning.

This phase reads the source code and breaks it into a stream of tokens, which are the
basic units of the programming language.

2. Syntax Analysis: The second phase of a compiler is syntax analysis, also known as parsing.
This phase takes the stream of tokens generated by the lexical analysis phase and checks
whether they conform to the grammar of the programming language. The output of this
phase is usually an Abstract Syntax Tree (AST).

3. Semantic Analysis: This phase checks whether the code is semantically correct, i.e.,

whether it conforms to the language’s type system and other semantic rules. In this stage,
the compiler checks the meaning of the source code to ensure that it makes sense.

4. Intermediate Code Generation: This phase generates an intermediate representation of

the source code that can be easily translated into machine code.

5. Optimization: This phase applies various optimization techniques to the intermediate

code to improve the performance of the generated machine code.

6. Code Generation: This phase takes the optimized intermediate code and generates the

actual machine code that can be executed by the target hardware.

(b)

Advantages of Compiler:

There are several advantages to using a compiler:
1. Improved performance: Compiled code tends to run faster than interpreted code because

it has been translated into machine code that can be directly executed by the computer’s
processor.

2. Portability: Compilers allow programmers to write code in a high-level programming
language that can be easily translated into machine code for a variety of different
platforms.

3. Increased Security: Compilers can help improve the security of software by performing a
number of checks on the source code, such as checking for syntax errors and enforcing
type safety.

4. Debugging support: Most compilers include a number of debugging tools that can help
programmers find and fix errors in their code.

5. No dependencies: Client or anyone else don’t need any compiler, interpreter or third
party program to be installed in their system for executing the shared executable file of
source code.

Disadvantages of Compiler:

There are a few potential disadvantages of using a compiler in software development:

1. Compilation time: Depending on the size and complexity of the source code, compilation

can take a significant amount of time.
2. Error detection: Compilers can only detect syntax errors and certain semantic errors, and

may not catch all errors in the source code.
3. Portability: Programs compiled for a specific platform or architecture may not be able to

run on other platforms or architectures without being recompiled..
4. Execution speed: Programs compiled from high-level languages may not be as fast as

programs written in low-level languages, as the compiled code may include additional
instructions for the compiler to interpret.

5. Lack of flexibility: Compilers can limit the flexibility of programs since changes often
require recompilation.

6. Resource consumption: Compilers can consume system resources, particularly during
compilation process, which may affect other tasks on the machine.

(c)

Why we learn compiler design-

Compilers are an essential tool in software development, as they allow programmers to write
code that is easier to read and write, can be easily compiled and run on different devices and
platforms, and can be optimized for performance.

There are several reasons why compilers are used in software development:
1. Ease of programming: High-level programming languages are easier for humans to read

and write than machine code, which is a series of numbers and symbols that can be
difficult for humans to understand. By using a compiler to translate high-level language
into machine code, programmers can write code more quickly and easily.

2. Portability: Compilers allow programmers to write code that can be easily compiled and
run on a wide variety of devices and platforms. This is because the source code is
independent of the underlying hardware and is only translated into machine code when it
is compiled.

3. Abstraction: Compilers provide a level of abstraction between the programmer and the
underlying hardware, allowing programmers to focus on the logic of their programs
without having to worry about the specific details of the hardware.

4. Performance: Compilers can optimize the machine code generated from the source code,
resulting in faster and more efficient programs.

Top-Down Parsing: Top-Down Parsing technique is a parsing technique which starts from the

top level of the parse tree, moves downwards, and evaluate rules of grammar. The top-down

parsing technique tries to identify the leftmost derivation for an input. It evaluates the rules of

grammar while parsing. Consequently, each terminal symbol in the top-down parsing is

produced by multiple productions of grammar rules.

Since top-down parsing uses leftmost derivation, hence in this parsing technique, the leftmost

decision selects what production rule is used to construct the string.

Bottom-Up Parsing: Bottom-Up Parsing technique is again a parsing technique which starts

from the lowest level of the parse tree, move upwards and evaluates the rules of grammar.

Therefore, the bottom-up parsing technique makes an attempt to decrease the input string to

the start symbol of the grammar.

The bottom-up parsing technique makes use of rightmost derivation. The main rightmost

decision is to select when a production rule is used to reduce the string to get the starting

symbol of the parsing tree.

Answer to the Question no- 2

(a)

Language Processing System

The computer is an intelligent combination of software and hardware. Hardware is simply a

piece of mechanical equipment and its functions are being compiled by the relevant software.

The hardware considers instructions as electronic charge, which is equivalent to the binary

language in software programming. The binary language has only 0s and 1s. To enlighten, the

hardware code has to be written in binary format, which is just a series of 0s and 1s. Writing

such code would be an inconvenient and complicated task for computer programmers, so we

write programs in a high-level language, which is Convenient for us to comprehend and

memorize. These programs are then fed into a series of devices and operating system (OS)

components to obtain the desired code that can be used by the machine. This is known as

a language processing system.

Components of language processing system:

Preprocessor: It includes all header files and also evaluates whether a macro (A macro is a piece

of code that is given a name. Whenever the name is used, it is replaced by the contents of the

macro by an interpreter or compiler. The purpose of macros is either to automate the

frequency used for sequences or to enable more powerful abstraction) is included. It takes

source code as input and produces modified source code as output. The preprocessor is also

known as a macro evaluator, the processing is optional that is if any language that does not

support #include macros processing is not required.

Compiler: The compiler takes the modified code as input and produces the target code as

output.

Assembler: The assembler takes the target code as input and produces real locatable machine

code as output.

Linker: Linker or link editor is a program that takes a collection of objects (created by

assemblers and compilers) and combines them into an executable program.

Loader: The loader keeps the linked program in the main memory.

Executable code: It is low-level and machine-specific code that the machine can easily

understand. Once the job of the linker and loader is done the object code is finally converted it

into executable code.

https://www.geeksforgeeks.org/compiler-design-tutorials/
https://www.geeksforgeeks.org/introduction-of-assembler/
https://www.geeksforgeeks.org/linker/
https://www.geeksforgeeks.org/difference-between-linker-and-loader/
https://www.geeksforgeeks.org/difference-between-source-code-and-object-code/

(b)

Cross Compiler
A cross compiler is a compiler capable of creating executable code for a platform other than
the one on which the compiler is running. For example, a cross compiler executes on machine
X and produces machine code for machine Y.
Compilers are the tool used to translate high-level programming language to low-level
programming language. The simple compiler works in one system only, but what will happen
if we need a compiler that can compile code from another platform, to perform such

compilation, the cross compiler is introduced.

(c)

Source Compiler:
A source to source compiler (S2S compiler) is also referred to by three other names, the first
is the source to source translator, the second is trans-compiler and the third one is transpiler.
If we try to summarize the work on the source to source compiler is a sentence, it would be
as follows:
A S2S Compiler is given as input the source code of a program to which it returns a source
code with the overall same functionality in the same or different programming language.

Unlike the general compiler whose work is to convert a high-level programming language to a
machine language that is binary, the source to source compiler converts one source code
from one programming language to another programming language which is at the same level
of compilation from machine language. For example, while the traditional compiler may
convert C to assembly or Java to byte code, the source to source compiler may convert one
scripting language to another such as JavaScript to Python, or C++ to Java.

