

Final Assessment

Submitted To:

Umme Khadiza Tithi

Lecturer, Department of Computer Science & Engineering

Victoria University of Bangladesh

Submission Date: 10 October, 2023

Md Bakhtiar Chowdhury

ID: 2121210061

Department: CSE

Semester: Summer 2023

Batch: 21th

Course Title: System Analysis and

Design

Course Code: CSI 311

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

2 | P a g e

Answer to the question no 1

What is System Design? Differences between system analysis and system design?

System Design is a crucial phase in the software development life cycle, following system

analysis. It involves the process of defining how the components of a system will be

organized and how they will work together to fulfill the specified requirements. System

design transforms the functional requirements identified during system analysis into a

detailed technical blueprint for the construction of the system. Here are the key aspects

of system design and the differences between system analysis and system design:

Aspect System Analysis System Design

Nature of

Activity

Focuses on understanding and defining

user requirements

Focuses on planning how to

implement the system to meet those

requirements

Level of

Abstraction

Deals with high-level, abstract

representations of the system

Deals with low-level, detailed

representations specifying how the

system will work

Output

Requirements documents, use cases,

functional specifications

Detailed technical design documents,

architectural diagrams, data models

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

3 | P a g e

Aspect System Analysis System Design

Purpose

Aims to understand and document user

needs and business processes

Aims to provide a technical plan for

constructing the system based on

defined requirements

Focus

Emphasizes the "what" of the system -

defining functional and non-functional

requirements

Emphasizes the "how" of the system -

specifying how it will be built and how

components will interact

Skills and

Expertise

Requires skills in requirements

gathering, stakeholder interviews, and

business process modeling

Requires technical skills in software

architecture, database design, and

system integration

Timing in the

SDLC

Typically one of the initial phases in the

Software Development Life Cycle

(SDLC), focusing on understanding

requirements before design and

development.

Follows system analysis in the SDLC,

occurring after the requirements are

gathered and serves as a blueprint for

development.

Abstraction

vs. Specificity

Involves abstract and high-level

representations of the system, such as

use cases, functional diagrams, and

requirements.

Involves detailed and specific

representations, including

architectural diagrams, data models,

and technical specifications.

This tabular format provides a clear comparison between the two phases, highlighting

their distinct roles and objectives in the software development process.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

4 | P a g e

Answer to the question no 2

What is System? Types of Systems? Define System models?

System:

A system is a collection of interconnected and interdependent components or elements

that work together to achieve a common objective or purpose. In a system, these

components interact with each other to perform specific functions or processes.

Systems can be found in various fields, including engineering, biology, information

technology, and social sciences. They are characterized by inputs, processes, outputs,

and feedback mechanisms. Systems thinking is a methodology that involves analyzing

and understanding how these components interact to achieve the system's goals.

Types of Systems:

Systems can be categorized into several types based on their characteristics and

application domains:

1. Physical Systems: These involve tangible components, such as machines, vehicles, or

buildings. Physical systems are often studied in engineering disciplines.

2. Biological Systems: Biological systems include living organisms, such as humans,

animals, and plants. These systems are studied in biology and related fields.

3. Information Systems: Information systems involve the processing and management

of data and information. Examples include databases, software applications, and

communication networks.

4. Social Systems: Social systems are composed of individuals, groups, or

organizations that interact to achieve social or societal goals. Examples include

governments, businesses, and communities.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

5 | P a g e

5. Economic Systems: These systems encompass the structures and processes that

govern the production, distribution, and consumption of goods and services in an

economy. Capitalism and socialism are examples of economic systems.

6. Ecological Systems: Ecological systems involve the interactions between living

organisms and their environment. Ecosystems, food chains, and climate systems are

examples.

7. Control Systems: Control systems are designed to regulate and control processes or

devices. Examples include feedback control systems in engineering and automation.

System Models:

System models are abstract representations or simplifications of real-world systems

used for analysis, design, and understanding. They help in studying and simulating

complex systems by breaking them down into manageable components. Common types

of system models include:

1. Mathematical Models: These models use mathematical equations and formulas to

represent the behavior of a system. Differential equations, algebraic models, and

statistical models are examples.

2. Block Diagrams: Block diagrams depict a system's components as blocks connected

by lines to represent relationships and interactions. They are often used in control

systems and engineering.

3. Flowcharts: Flowcharts use graphical symbols and arrows to illustrate the flow of

processes within a system. They are commonly used in software development and

process analysis.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

6 | P a g e

4. State Transition Diagrams: These diagrams depict the different states a system or

process can be in and the transitions between them. They are useful for modeling

dynamic systems.

5. Simulation Models: Simulation models use computer software to mimic the behavior

of a system over time. They are valuable for predicting and analyzing the system's

performance.

6. Data Models: Data models represent the structure and relationships within a database

or information system. Entity-Relationship Diagrams (ERDs) and relational data models

are examples.

7. System Dynamics Models: These models focus on understanding how changes in one

part of a system can affect other parts over time. They are often used for studying

complex dynamic systems.

System models help in gaining insights into system behavior, predicting outcomes,

making decisions, and improving system performance by providing a simplified but

meaningful representation of reality.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

7 | P a g e

Answer to the question no 3

Define element and types of DFD?

Data Flow Diagram (DFD) is a graphical representation of data flow in any system. It is

capable of illustrating incoming data flow, outgoing data flow and store data. Data flow

diagram describes anything about how data flows through the system.

Sometimes people get confused between data flow diagram and flowchart. There is a

major difference between data flow diagram and flowchart. The flowchart illustrates

flow of control in program modules. Data flow diagrams illustrate flow of data in the

system at various levels. Data flow diagram does not have any control or branch

elements.

Types of DFD :

DFD is of two types:

Logical DFD:

Logical data flow diagram mainly focuses on the system process. It illustrates how data

flows in the system. Logical DFD is used in various organizations for the smooth running

of system. Like in a Banking software system, it is used to describe how data is moved

from one entity to another.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

8 | P a g e

Physical DFD:

Physical data flow diagram shows how the data flow is actually implemented in the

system. Physical DFD is more specific and close to implementation.

Element in DFD (Data Flow Diagram):

In a Data Flow Diagram (DFD), an element refers to a specific component or symbol used

to represent different aspects of a system or process. Elements in a DFD help visualize

the flow of data within a system and the interactions between various components. The

primary elements in a DFD include processes, data stores, data flows, and external

entities Here's a brief explanation of these elements:

1. Processes: Processes, represented as circles or ovals, depict specific activities,

functions, or transformations that occur within the system. They indicate what

happens to the data as it moves through the system.

2. Data Stores: Data stores, represented as rectangles, represent places where data

is stored or retrieved. These can be physical locations like databases or files, or

they can be temporary storage within the system.

3. Data Flows: Data flows, represented as arrows, represent the movement of data

between processes, data stores, external entities, or other elements. They show

the direction of data and the paths it takes.

4. External Entities: External entities, represented as rectangles with rounded

corners, represent entities outside the system that interact with it. These can be

users, other systems, or external data sources.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

9 | P a g e

Types of DFD (Data Flow Diagram):

DFDs are typically categorized into different levels or types based on the level of detail

and abstraction. The main types of DFDs include:

Certainly, here are the types of Data Flow Diagrams (DFDs) in a shorter format:

- Context Diagram: Provides an overview of the entire system and its interactions with

external entities.

- Level 1 DFD: Breaks down the system into major processes or subsystems.

- Lower-Level DFDs: Offer more detailed views of processes, data flows, and data stores

with multiple levels of decomposition.

- Full System DFD: Represents the entire system at a detailed level.

- Primitive DFDs: Show processes in detail, often with inputs, outputs, and subprocesses.

The choice of DFD type depends on the purpose of the diagram and the level of detail

required for analysis and communication. Context Diagrams are useful for high-level

understanding, while lower-level DFDs are valuable for detailed analysis and design.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

10 | P a g e

Answer to the question no 4

Write down Bottom-Up strategys advantages and Disadvantage? Objectives of using

structural flowcharts?

Bottom-Up Strategy

The Bottom-Up strategy is an approach used in various fields, including software

development, problem-solving, and system design. It involves starting with the smallest

components or details and gradually building up to create a larger, more complex system.

This strategy is often associated with incremental development and can be contrasted

with the Top-Down approach, which starts with the overall system and breaks it down

into smaller components.

Advantages of Bottom-Up Strategy:

1. Modularity: One of the key advantages of the Bottom-Up strategy is its focus on

modularity. By developing and testing small, independent components first, it becomes

easier to manage, reuse, and maintain these modules. This modularity enhances system

flexibility and scalability.

2. Early Validation: Since each small component is developed and tested individually,

validation of these components can occur early in the development process. This helps

in identifying and fixing issues at a granular level, reducing the risk of major problems in

the final system.

3. Incremental Progress: Bottom-Up development allows for incremental progress.

Developers can see tangible results as individual components are completed and

integrated, providing a sense of accomplishment and ensuring that progress is visible

even before the entire system is complete.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

11 | P a g e

4. Faster Iterations: Bottom-Up allows for faster iterations and frequent updates. As each

component is developed, tested, and integrated, it can be refined and improved in

subsequent iterations, leading to faster overall development.

5. Flexibility and Adaptability: Bottom-Up strategy lends itself well to adaptability.

Changes in requirements or the addition of new features can be integrated more easily

into the existing modular structure.

Disadvantages of Bottom-Up Strategy:

1. Integration Complexity: The Bottom-Up strategy, while focused on modularity, can lead

to integration complexities. Ensuring that all components work seamlessly together can

be challenging, especially if there are unexpected dependencies or interactions.

2. Lack of Early System View: Since the Bottom-Up approach starts with small

components, there might be a lack of a comprehensive system view in the early stages

of development. This can make it difficult to ensure that the overall system design aligns

with the intended goals.

3. Potential Redundancy: Without careful planning and coordination, there's a risk of

redundant efforts in developing similar functionalities within different components. This

can lead to inefficiencies and increased development time.

4. Difficulty in System-level Decisions: Some system-level decisions may need to be

deferred until the components are integrated, making it challenging to make informed

architectural choices early in the development process.

5. Testing Complexity: While individual components can be tested effectively, testing the

interactions and integration of all components can be complex and time-consuming,

especially if integration testing is not well-structured.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 311, Course Title: System Analysis and Design

12 | P a g e

In summary, the Bottom-Up strategy offers advantages such as modularity, early

validation, incremental progress, and flexibility. However, it can also present challenges

in terms of integration complexity, the lack of early system view, and potential

redundancy. The choice of strategy depends on the specific project, its requirements, and

the development team's preferences and expertise.

>>>>>>END<<<<<<

