Final Assessment | Summer 2023

Md. Shafayet Hossain

CSE - 21st Batch | **Course Title:** System Analysis & Design

Course Code: CSI - 311 | ID: 2121210071

System Design

System design is the phase that bridges the gap between problem domain and the existing system in a manageable way. This phase focuses on the solution domain, i.e. "how to implement?"

It is the phase where the SRS document is converted into a format that can be implemented and decides how the system will operate.

In this phase, the complex activity of system development is divided into several smaller sub-activities, which coordinate with each other to achieve the main objective of system development.

Factors	System Analysis	System Design
Purpose	System Analysis is the process of gathering and analyzing information to assess the suitability of a current system and to determine the requirements of a new system.	System Design is the process of specifying elements of a system such as modules, architecture, components, and their interfaces.
Approach	System Analysis is a top-down approach where the analyst looks at the big picture first and then delves into the details.	System Design is a bottom-up approach where the analyst starts with the details and moves up to the big picture.
Scope	System Analysis focuses on the needs of the user, the current system, and the business processes that the system must support.	System Design focuses on the design of the system, its architecture, and the components that make up the system.
Output	System Analysis produces the requirements document that describes the desired system.	System Design produces the design document that describes the architecture and components of the system.

Differences Between System Analysis and System Design-

Time	System Analysis is a one-time	System Design is an ongoing
	process that occurs at the	process that occurs throughout the
	beginning of the project.	project.
Methodology	System Analysis relies on a	System Design relies on an
	structured approach such as the	iterative approach such as the
	Waterfall Model or the Agile	Spiral Model.
	Methodology.	
Tools	System Analysis utilizes tools	System Design utilizes tools such
	such as interviews, surveys,	as data flow diagrams and object-
	questionnaires, and observation.	oriented diagrams.
Process	System Analysis is the first step	System Design is the second step
	in the software development	in the software development
	process.	process.
Goals	The goal of System Analysis is to	The goal of System Design is to
	identify and understand the user	create a design that meets the user
	requirements and the business	requirements and supports the
	processes that the system must	business processes.
	support.	
Risk	System Analysis involves minimal	System Design involves significant
	risk.	risk, as the design may not meet
		the user requirements or support
		the business processes.
Problem	System Analysis focuses on	System Design focuses on
Solving	problem identification and	problem-solving and finding
	definition.	solutions.

What is a System?

The word System is derived from Greek word Systema, which means an organized relationship between any set of components to achieve some common cause or objective.

A system is "an orderly grouping of interdependent components linked together according to a plan to achieve a specific goal."

Types of System-

The system can be divided into the following types -

- Physical or Abstract System
- Open or Closed System
- Adaptive and Non Adaptive System
- Permanent or Temporary System
- Natural and Manufactured System
- Deterministic or Probabilistic System
- Social, Human-Machine, Machine System
- Man–Made Information System

Systems Models

Schematic Models-

- A schematic model is a 2-D chart that shows system elements and their linkages.
- Different arrows are used to show information flow, material flow, and information feedback.

Flow System Models-

- A flow system model shows the orderly flow of the material, energy, and information that hold the system together.
- Program Evaluation and Review Technique (PERT), for example, is used to abstract a real world system in model form.

Static System Models-

- They represent one pair of relationships such as *activity-time* or *cost-quantity*.
- The Gantt chart, for example, gives a static picture of an activity-time relationship.

Dynamic System Models-

- Business organizations are dynamic systems. A dynamic model approximates the type of organization or application that analysts deal with.
- It shows an ongoing, constantly changing status of the system. It consists of -
 - Inputs that enter the system
 - The processor through which transformation takes place
 - The program(s) required for processing
 - The output(s) that result from processing.

Elements of Data Flow Diagram

Following are the elements of the data flow diagram that are used to represent source, destination, storage and flow of data.

• Entities:

Entities include source and destination of the data. Entities are represented by rectangle with their corresponding names.

• Process:

The tasks performed on the data is known as process. Process is represented by circle. Somewhere round edge rectangles are also used to represent process.

• Data Storage:

Data storage includes the database of the system. It is represented by rectangle with both smaller sides missing or in other words within two parallel lines.

• Data Flow:

The movement of data in the system is known as data flow. It is represented with the help of arrow. The tail of the arrow is source and the head of the arrow is destination.

Types of Data Flow Diagram

DFD is of two types-

1. Logical DFD:

Logical data flow diagram mainly focuses on the system process. It illustrates how data flows in the system. Logical DFD is used in various organizations for the smooth running of system. Like in a Banking software system, it is used to describe how data is moved from one entity to another.

2. Physical DFD:

Physical data flow diagram shows how the data flow is actually implemented in the system. Physical DFD is more specific and close to implementation.

Bottom-up Strategies:

Advantages:

- The economics can result when general solutions can be reused.
- It can be used to hide the low-level details of implementation and be merged with the top-down technique.

Disadvantages:

- It is not so closely related to the structure of the problem.
- High-quality bottom-up solutions are very hard to construct.
- It leads to the proliferation of 'potentially useful' functions rather than the most appropriate ones.

Objectives of Using Structural Flowcharts

- It is most importantly used when programmers make projects. Flowchart is a basic step to make the design of projects pictorially, it is preferred by many.
- When the flowcharts of a process are drawn, the programmer understands the non-useful parts of the process. So flowcharts are used to separate sound logic from the unwanted parts.
- Since the rules and procedures of drawing a flowchart are universal, a flowchart serves as a communication channel to the people who are working on the same project for better understanding.
- Optimizing a process becomes easier with flowcharts. The efficiency of the code is improved with the flowchart drawing.