

MID Term Assessment

Md Bakhtiar Chowdhury

ID: 2121210061

Department: CSE

Semester: Summer 2023

Batch: 21th

Course Title: Digital Logic Design

Course Code: CSE 213

Submitted To:

Md. Shahin Khan

Lecturer, Dept. of CSE/CSIT

Victoria University of Bangladesh

Submission Date: 18 August, 2023

Answert to the question No.1(a)

Define DLD: Digital logic Design is the process of designing and implementing digital circuits using various electronic components and logical operators. These digital circuits process binary information to perform specific task, make legisions, on execute algorithoms. Digital logic design forms the foundation of modern digital systems, including computers, microcontrollers, communication devices and more.

Fields of Digital lagic design.

- 1 Digital integrated aircuit design.
- @ Field programmable brate armay design
- 3 application specific integreated circuit design.
- 1 Digital system design
- 6) computer architecture
- 6 Digital signal processing
- 8 controlle system design
- @ Digital communication system.

Answert to the question NO 1(b)

Ans. Advantages of DLD

High Accuracy and precision

Ease of replication and storage

Low signal loss

Noise Immunity

Logical operations

Ease of integration.

Flexibility of om a reconfigurablity.

Ease of sebugging

Design automation

low power consumption

Answer to the question No 2 (a)

Answer to the question NO 2(b)

$$(Aco9)_{16} = (10\times16^{3}) + (12\times16^{5}) + (0+16^{1}) + (9\times16^{9})$$

$$= 40960 + 3072 + 9$$

$$= (44041)_{10} \text{ Ans.}$$

c)
$$(100011)_2 = ?_{10}$$

 $(100011)_2 = (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (0 \times 2^7) + (1 \times 2^7) + (1 \times 2^9)$
 $= 32 + 2 + 1$
 $= (35)_{10}$

Answer to the guestion no 2(d)

d)
$$(12435)_g = ?_{10}$$

 $(12435)_g = (1 \times 8^4) + (2 \times 8^3) + (4 \times 8^4) + (3 \times 8^4) + (5 \times 8^9)$
 $= 4096 + 1024 + 256 + 24 + 5$
 $= (5405)_{10}$

3 a) Define with example of LSB & MSB.

LSB: Least significant bit is the bit position in a binary integer giving the units value, that is, determining whether the number is even on odd. The LSB is sometimes referred to as the low order bit or right-most bit.

Ex: 10010101

MSB: "most significant byte" the meaning is parallel to the above. it is the byte in that position of a multi-byte number which has the greatest value.

Answer to the guestion 3(b)

$$(37)_{10} = (101)_6$$
 Answen.

(53)₆ = ?₁₀

$$(53)_6 = (5 \times 6') + (3 \times 6^{\circ})$$

= 30+3
= (33)₁₀

(10762)₈ = ?₁₆

octal to binary

$$(10762)_g = (001000111110010)_2$$

then binary to Hexadeeimal

$$0001 = 1$$

$$0001 = 1$$
 4 bils group.

$$1111 = F$$

(iv)
$$(AB9EF)_{16} = ?8$$

Step1 Hexadecimal to binary

 $A \rightarrow 1010$
 $B \Rightarrow 1011$
 $9 \rightarrow 1001$
 $E \rightarrow 1110$
 $F \Rightarrow 1111$

(AB9EF)₁₆ = $(10|01011|001|1101111)$ 2

Step 2 - Binary to octal

 $010 \rightarrow 2$
 $101 \rightarrow 5$
 $011 \rightarrow 3$
 $100 \rightarrow 4$
 $3bit$ group
 $111 \rightarrow 7$
 $101 \rightarrow 5$
 $111 \rightarrow 7$
 $(10101011100111101111)_2 = (2534757)_8$
 $AB9EF)_{16} = (2534757)_8$

Ans.

>>>>END<