
Final Assessment│Spring 2023

Md. Shafayet Hossain

CSE - 21st Batch │ Course Title: Artificial Intelligence

Course Code: CSI - 341 │ ID: 2121210071

Answer to the Question no- 1

(a)

Blind Search Algorithm-

A blind search (also called an uninformed search) is a search that has no information

about its domain. The only thing that a blind search can do is distinguish a non-goal

state from a goal state.

List of Blind Search Algorithm-

➢ Breadth – first Search

➢ Uniform – cost Search

➢ Depth - first Search

➢ Depth - limited Search

➢ Iterative deepening Depth-first Search

Blind Search Algorithm Properties-

Breadth – first Search:

• Complete? Yes (if b is finite)

• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

• Space? O(bd+1) (keeps every node in memory)

• Optimal? Yes (if cost = 1 per step)

• Space is the bigger problem (more than time)

Uniform – cost Search:

• Complete? Yes, if step cost ≥ ε (cost per action)

• Time? # of nodes with g ≤ cost of optimal solution, ε O(bceiling(C*/ ε)) where C* is the

cost of the optimal solution

• Space? # of nodes with g ≤ cost of optimal solution, O(bceiling(C*/ ε))

• Optimal? Yes – nodes expanded in increasing order of g(n)

Depth - first Search:

• Complete? No: fails in infinite-depth spaces, spaces with loops

• Modify to avoid repeated states along path

• → complete in finite spaces

• Time? O(bm): terrible if m is much larger than d

• but if solutions are dense, may be much faster than breadth-first

• Space? O(bm), i.e., linear space!

• Optimal? No

Depth - limited Search:

= depth-first search with depth limit l,

i.e., nodes at depth l have no successors

Iterative deepening Depth-first Search:

• Complete? Yes

• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1

(b)

 Four general steps in problem solving:

◼ Goal formulation

 What are the successful world states

◼ Problem formulation

 What actions and states to consider given the goal

◼ Search

 Determine the possible sequence of actions that lead to the states

of known values and then choosing the best sequence.

◼ Execute

 Give the solution perform the actions.

Answer to the Question no- 2

(a)

States of a Robot Assembly-

 States: Real-valued coordinates of robot joint angles; parts of the object to be

assembled.

 Initial state: Any arm position and object configuration.

 Actions: Continuous motion of robot joints

 Goal test: Complete assembly (without robot)

 Path cost: Time to execute

(b)

States for the given tree using BFS search-strategy:

FRINGE = (1)

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

 New nodes are inserted at the end of the queue

Answer to the Question no- 4

(a)

Problem Solving Agent-

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal:

• be in Bucharest

• Formulate problem:

• states: various cities

• actions: drive between cities

• Find solution:

• sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

(b)

Limitations of DFS Strategy-

 Depth-first with depth cutoff k (maximal depth below which nodes are not

expanded)

 Three possible outcomes:

◼ Solution

◼ Failure (no solution)

◼ Cut-off (no solution within cutoff)

◼ Solves the infinite-path problem.

 If k< d then incompleteness results.

 If k> d then not optimal.

 Time complexity: O(bk)

 Space complexity O(bk)

Answer to the Question no- 5

(a)

Avoiding Repeated States-

 Depth-first strategy:

◼ Solution 1:

 Keep track of all states associated with nodes in current tree

 If the state of a new node already exists, then discard the node

→ Avoids loops

◼ Solution 2:

 Keep track of all states generated so far

 If the state of a new node has already been generated, then discard

the node

→ Space complexity of breadth-first

(b)

Real-world Problems where we can use searching algorithms-

Seartching algorithm is used in wide sectors around the world. Some real world

problems where searching algorithm is used are given below:

 Route finding

 Touring problems

 VLSI layout

 Robot Navigation

 Automatic assembly sequencing

 Drug design

 Internet searching

