

Victoria University of Bangladesh

Course Title : Discrete Mathematics

Course Code : MAT-135

Submít By : Mst. Shahanaj Parvín

Submit Date : 20/04/2023

Submitted To : Umme Khadiza Tithi

Id Number : 2519150021

Program : CSIT (Day)

Answer to the question number 5 01

All sets under investigation in any application of set theory are assumed to belong to same tixed large set called the universal set which we denote by 'U'.

Unless otherwise stated or implied.

Given a universal set U and a preparty P, there my not be any elements of U which have property P. For example, the following set has no elements:

5 = {x|x is a positive integer, x2=3}

such a set with no elements is called the empty set on null set and is denoted by Q.

There is only one empty set. That is, it sand I are both empty, then s=I. Since they have exactly the same elements, namely none.

The empty set is also neganded as a subject of every other set. Thus we have the following simple nesult which we state formally.

Two sets A and B are raised to be disjoint if they have no elements in common. For example:

$$A = \{1,2\}$$
, $B = \{4,5,6\}$ and $C = \{5,6,7,8\}$

Then A and B are disjoint and A and c are disjoint. But B and C are not disjoint once B and C have elements in common. e.g 5 and 6. We not that, it A and B are disjoint, then neigher is a subset of the other.

Answer to the question number : 1 Let A= { 1,2,3,4}, B= {3,4,5,6,7}, C= \$2,3,8,8} AUC = {0,2,3,4} U {2,3,8,9} = {1,2,3,4,8,9} - AUB = { 2, 2, 3, 4} U { 3, 4, 5, 6, 7} = {1,2,3,4,5,6,7} BUC = { 3, 4, 5, 6, 7} U {2,3,8, 3} = {2,3,4,5,67,8,9}

Identification Laws	(a) AUA = A	(16) A NA = A		
ALANDO LONDO	The state of the s			
	(20) (AUB) UC = AU (BI	(26) (ANB) ne=An		
Commutative Laws	(30) AUB = BUA	(36) ADB - BOA		
Distributive Lapus	(4a) AU(Bnc)=(AUB) n(AI	ue) (46) A (1/270) = (ADR)		
Identity Laws	(5a) (AUV = U	(5b) Ant = A		
Invokation laws	(Sa) AUV=to			
Complements lous	(7x) (AE)C= A	(6b) AND = Ø		
Namena de la		(B) AC AC = O		
Demongan's laws	(200) (AUB) C=ACNBC	(10b) (ANB) C=AU		
	An worth . 2Ho. bran			
The It - Northbury	Contraction of the last	-		
state - postore	- Virter/upo no lan			

Answer to the question number - 02 we know that . R= {(1,2), (2,3), (3,3)} A= {1,2,3} Then, $R^2 = R_0R = \{(2,3), (2,3), (3,3)\}$ and $R^3 = R^2 R = \{(2,3), (2,3), (3,3)\}$ Accordingly, Anansitive (R) = {(2,2), (2,3), (3,3), (2,3)}

Answer to the question number of 2

Equivalence Relation: consider a nonempty set 5. A Relation R and 5 is an equivalence nelation if R is netlexive, symmetric and transitive. That is, R is an equivalence nelation on 5 if it has the following three properties.

- 1) For every afs, oRa.
- 1) If a RB, then bRo.
- (1) If aRb and bRc, then aRc.

The general idea behind an equivalence nelation is that, it is a classification of objects which are in some way "alike". In fact the nebation "=" of equality on any set 3 is a equivalence nelation. That is:

- @ a = aton every ats
- @ Is a = b , the b = a
- 3 If a=b, b=c, then a=c.

7

Answer to the question number : 03

Let 5 be the statement !

"It is not thue that, noses are ned and violets are blue". Then 5 can be written in the form - (PAQ). However, as noted above, - $(PAQ) \equiv -PV-Q$. Accordingly, 5 has the same meaning as the statement.

"Roses are not Red on violets are not blue."

P	191	PAG	-(pnq)	P	9	P	-9	-pv-92
			F	-1	T	F	F	·F
I	F	F	T	T	F	F	I	T
F	+ =	F	7	F	T	I	F	T
100	10	110	1	F	F	I	I	I

FIG: 1.1

Answer to the question number : 3

Conditional and Bioconditional Statement :

Many statement particularly in mathematics are the form rif P then q. Such statements are called conditional statements are denoted by $p \rightarrow q$.

The conditional p-q is thequently nead P implies q" on only q'.

Another common statement is of the form 'p it and only if a". Such statements are called bioconditional statements and are denoted by

P479

The truth values of pag and ptag are defined by the tables in FIG. Observed that;

- @ The conditional P-q is false only when the that pant p is true and the second pant q is false. Accordingly, when p is false, the conditional p-q is true regardless of the truth value of q.
- B The bioconditional P→q is true whenever P and q have the same truth values and false otherwise. The truth table of -Pnq appears in FIG. (1.2). Note that, the truth table of -Pvq and P→q are identical, that is they are both false only in the second case. Accordingly, P-q is logically equivalent to -Pvq; that is P→q = -pvq

In other words, the conditional statements "it p then q" is logically equivalent to the statement "Not p or q" which only involves the connectives " and that's was already a part of our language. We may regard page as an abbreviation for an off-necumning statement.

P Q P→q T T F T T F F T T	P 9 P P T T F F T F F T F F T T F F T T F F T T F T T F T T T F F T T T F F T	P 4 - P - PVQ I I F I I I F I I I F F I I I (c) - PVQ
,		