

 Victoria University of Bangladesh

Final -Term Examination– Summer 2022

Submitted To:

Renea Chowdhury Shormi

Lecturer

Victoria University of Bangladesh

Submitted By:

Name: Anny Konika Das,

ID: 2120190011

Program: B.Sc in CSE.

Semester: Summer-2022

Course Title: Operating System Concepts

Code: CSI-231.

 1.No.Qus.Ans.

a)ans: Valid and Invalid:

Valid indicates that the associated page is in the logical address

space. Invalid indicates that the associated page is not in logical address

space. One additional bit is generally attached to each entry in the page

table: a valid–invalid bit. When this bit is set to valid, the associated page

is in the process’s logical address space and is thus a legal (or valid)

page. When the bit is set to invalid, the page is not in the process’s

logical address space.

t might be that the system has no way of knowing which pages are valid

(0-5) and which ones are invalid (6 and 7) other than marking the entries

for the invalid pages with an invalid flag.

b)ans: Segmentation Architecture:

Segment Table

A Table that is used to store the information of all segments of the

process is commonly known as Segment Table. Generally, there is

no simple relationship between logical addresses and physical

addresses in this scheme.

 The mapping of a two-dimensional Logical address into a

one-dimensional Physical address is done using the segment

table.

 This table is mainly stored as a separate segment in the main

memory.

 The table that stores the base address of the segment table

is commonly known as the Segment table base register

(STBR)

In the segment table each entry has :

1. Segment Base/base address: The segment base mainly

contains the starting physical address where the segments

reside in the memory.

2. Segment Limit: The segment limit is mainly used to specify

the length of the segment.

Segment Table Base Register(STBR) The STBR register is used to

point the segment table's location in the memory.

Segment Table Length Register(STLR) This register indicates the

number of segments used by a program. The segment number s is

legal if s<STLR

 Protection

 With each entry in segment table associate:

validation bit = 0 illegal segment

read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at

segment level

 Since segments vary in length, memory allocation is a dynamic

storage-allocation problem

 A segmentation example is shown in the following diagram.

Example of Segmentation

Given below is the example of the segmentation, There are five segments

numbered from 0 to 4. These segments will be stored in Physical memory

as shown. There is a separate entry for each segment in the segment table

which contains the beginning entry address of the segment in the physical

memory(denoted as the base) and also contains the length of the

segment(denoted as limit).

Segment 2 is 400 bytes long and begins at location 4300. Thus in

this case a reference to byte 53 of segment 2 is mapped onto the

location 4300 (4300+53=4353). A reference to segment 3, byte 85 is

mapped to 3200(the base of segment 3)+852=4052. A reference to

byte 1222 of segment 0 would result in the trap to the OS, as the

length of this segment is 1000 bytes.

c)ans: Physical Address: In computing, a physical address (also

real address, or binary address), is a memory address that is represented

in the form of a binary number on the address bus circuitry in order to

enable the data bus to access a particular storage cell of main memory, or

a register of memory-mapped I/O device. Physical Address identifies

a physical location of required data in a memory. The user

never directly deals with the physical address but can access

by its corresponding logical address. The user program

generates the logical address and thinks that the program is

running in this logical address but the program needs physical

memory for its execution, therefore, the logical address must

be mapped to the physical address by MMU before they are

used. The term Physical Address Space is used for all physical

addresses corresponding to the logical addresses in a Logical

address space. User can never view physical address of

program. The user can indirectly access physical address but not

directly. Physical address will not change.

 3.No.Qus.Ans:

a)ans: Deadlock characterization describes the distinctive

features that are the cause of deadlock occurrence

Deadlock is a condition in the multiprogramming
environment where the executing processes get stuck in the
middle of execution waiting for the resources that have been
held by the other waiting processes thereby preventing the
execution of the processes. In this content, we will discuss
the characteristics that are essential for the occurrence of
deadlock. The four conditions that must sustain at the same
time to eventuate a deadlock are: mutual experience, hold
and wait, no preemption, circular wait.

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

1. Mutual exclusion: In a multiprogramming environment,

there may be several processes requesting the same

resource at a time. The mutual exclusion condition, allow only

a single process to access the resource at a time. While the

other processes requesting the same resource must wait and

delay their execution until it has been released. The mutual

exclusion condition prevents two or more processes to

access the same resource at a time. only one process at a

time can use a resource.

2. Hold and wait: The hold and wait condition simply means

that the process must be holding access to one resource and

must be waiting to get hold of other resources that have been

acquired by the other processes.

3. No preemption: A process acquiring a resource, cannot

be preempted in between, to release the acquired resource.

Instead, the process must voluntarily release the resource it

has acquired when the task of the process has been

completed.

4. Circular wait: The processes must be waiting in a circular

pattern to acquire the resource. This is similar to hold and

waits the only difference is that the processes are waiting in

a circular pattern. There exists a set {P0, P1, ..., P0} of

waiting processes such that P0 is waiting for a resource

that is held by P1, P1 is waiting for a resource that is held

by P2, ..., Pn–1 is waiting for a resource that is held by

Pn, and P0 is waiting for a resource that is held by P0.

b)ans: Introduction:

A deadlock in the operating system is a situation of indefinite
blocking of one or more processes that compete for resources.
Deadlock involves resources needed by two or more processes at
the same time that cannot be shared. We can understand this from
the above example, two cars require the road at the same time but
it cannot be shared as it is one way. There are four
necessary conditions for deadlock. Deadlock happens only when all
four conditions occur simultaneously for unshareable
single instance resources.

The conditions for deadlock are:

1. Mutual exclusion
2. Hold and wait
3. No preemption
4. Circular wait.

There are three ways to handle deadlock:

1. Deadlock prevention: The possibility of deadlock is
excluded before making requests, by eliminating one of the
necessary conditions for deadlock. Example: Only allowing
traffic from one direction, will exclude the possibility
of blocking the road.

2. Deadlock avoidance: Operating system runs an algorithm
on requests to check for a safe state. Any request that may
result in a deadlock is not granted.

Example: Checking each car and not allowing any car that
can block the road. If there is already traffic on road, then a
car coming from the opposite direction can cause blockage.

3. Deadlock detection & recovery: OS detects deadlock by
regularly checking the system state, and recovers to a safe
state using recovery techniques. Example: Unblocking the
road by backing cars from one side. Deadlock prevention
and deadlock avoidance are carried out before deadlock
occurs.

In this article, we will learn about deadlock prevention in OS.

Deadlock prevention is a set of methods used to ensure that all
requests are safe, by eliminating at least one of the four necessary
conditions for deadlock. Deadlock Prevention in Operating System. A

process is a set of instructions. When a process runs, it needs resources
like CPU cycles, Files, or Peripheral device access. Some of
the requests for resources can lead to deadlock.

Deadlock prevention is eliminating one of the necessary
conditions of deadlock so that only safe requests are made to OS
and the possibility of deadlock is excluded before making requests.
As now requests are made carefully, the operating system
can grant all requests safely. Here OS does not need to do any
additional tasks as it does in deadlock avoidance by running
an algorithm on requests checking for the possibility of deadlock.

C) ans: Safe State:

 A state is safe if the system can allocate resources to each

process (up to its maximum) in some order and still avoid a

deadlock. A state is safe if the system can allocate all resources

requested by all processes (up to their stated maximums) without
entering a deadlock state.

 More formally, a system is in a safe state only if there

exists a safe sequence.

o A sequence of processes is a

safe sequence for the current allocation state if, for

each the resource requests that can still make

can be satisfied by the currently available resources

plus the resources held by all , with .

o In this situation, if the resources that needs are

not immediately available, then can wait until

all have finished.

o When they have finished, can obtain all of its

needed resources, complete its designated task,

return its allocated resources, and terminate.

o When terminates, can obtain its needed

resources, and so on.

 4.No.Qus.Ans:

A) ans:

A solution of the Dining Philosophers Problem is to use
a semaphore to represent a chopstick. A chopstick can be picked
up by executing a wait operation on the semaphore and released

by executing a signal semaphore.The Dining Philosopher
Problem – The Dining Philosopher Problem states that K
philosophers seated around a circular table with one
chopstick between each pair of philosophers. There is one
chopstick between each philosopher. A philosopher may eat
if he can pick up the two chopsticks adjacent to him. One
chopstick may be picked up by any one of its adjacent
followers but not both.

Semaphore Solution to Dining Philosopher –
Each philosopher is represented by the following
pseudocode:

process P[i]

 while true do

 { THINK;

 PICKUP(CHOPSTICK[i], CHOPSTICK[i+1 mod 5]);

 EAT;

 PUTDOWN(CHOPSTICK[i], CHOPSTICK[i+1 mod 5])

 }

There are three states of the philosopher: THINKING,
HUNGRY, and EATING. Here there are two semaphores:
Mutex and a semaphore array for the philosophers. Mutex is
used such that no two philosophers may access the pickup or
putdown at the same time. The array is used to control the
behavior of each philosopher. But, semaphores can result in
deadlock due to programming errors.

B) ans: Introduction. Bounded buffer problem, which is also

called producer consumer problem, is one of the classic problems

of synchronization. The bounded-buffer problems (aka the producer-

consumer problem) is a classic example of concurrent access to a shared

resource. A bounded buffer lets multiple producers and multiple

consumers share a single buffer. Producers write data to the buffer and

consumers read data from the buffer. In Bounded Buffer Problem there

are three entities storage buffer slots, consumer and producer. The

producer tries to store data in the storage slots while the consumer

tries to remove the data from the buffer storage. It is one of the

most important process synchronizing problem let us understand

more about the same.

Problem:

The bounded buffer problem uses Semaphore. Please read more

about Semaphores here before proceeding with this post here. We

need to make sure that the access to data buffer is only either to

producer or consumer, i.e. when producer is placing the item in the

buffer the consumer shouldn’t consume. We do that via three

entities –

 Mutex mutex – used to lock and release critical section
 empty – Keeps tab on number empty slots in the buffer at any

given time
o Initialised as n as all slots are empty.

 full – Keeps tab on number of entities in buffer at any given time.
o Initialised as 0

 The structure of the producer process

do {

// produce an item in nextp

https://prepinsta.com/operating-systems/semaphore/

wait (empty);

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

 The structure of the consumer process

do {

wait (full);

wait (mutex);

// remove an item from buffer to

nextc

signal (mutex);

signal (empty);

// consume the item in nextc

} while (TRUE);

C) ans: Starvation:

Starvation is the problem that occurs when high priority
processes keep executing and low priority processes get
blocked for indefinite time. In heavily loaded computer
system, a steady stream of higher-priority processes can
prevent a low-priority process from ever getting the CPU. In
starvation resources are continuously utilized by high priority
processes. Problem of starvation can be resolved using
Aging. In Aging priority of long waiting processes is gradually
increased.

https://www.geeksforgeeks.org/starvation-and-aging-in-operating-systems/

 5.No.Qus.Ans:

A) ans: Multithreading Issues:

Multithreaded programs can sometimes lead to unpredictable results as

they are essentially multiple parts of a program that are running at the same

time. Complications for Porting Existing Code − A lot of testing is required

for porting existing code in multithreading.

Below we have mentioned a few issues related to multithreading. Well, it's

an old saying, All good things, come at a price. There are several

threading issues when we are in a multithreading environment. In this

section, we will discuss the threading issues with system calls,

cancellation of thread, signal handling, thread pool and thread-

specific data.

Multithreading Issues

1. System Calls
2. Thread Cancellation
3. Signal Handling
4. Thread Pool
5. Thread Specific Data

1. fork() and exec() System Calls:

The fork() and exec() are the system calls. The
fork() call creates a duplicate process of the
process that invokes fork(). The new duplicate
process is called child process and process

https://binaryterms.com/threading-issues-in-os.html#SystemCalls
https://binaryterms.com/threading-issues-in-os.html#ThreadCancellation
https://binaryterms.com/threading-issues-in-os.html#SignalHandling
https://binaryterms.com/threading-issues-in-os.html#ThreadPool
https://binaryterms.com/threading-issues-in-os.html#ThreadSpecificData

invoking the fork() is called the parent process.
Both the parent process and the child process
continue their execution from the instruction that
is just after the fork(). Consider that a thread of
the multithreaded program has invoked the
fork(). So, the fork() would create a new
duplicate process. Here the issue is whether the
new duplicate process created by fork() will
duplicate all the threads of the parent process or
the duplicate process would be single-threaded.

2. Thread cancellation

Termination of the thread in the middle of its execution it is
termed as ‘thread cancellation’. Let us understand this with
the help of an example. Consider that there is a
multithreaded program which has let its multiple threads to
search through a database for some information. However,
if one of the thread returns with the desired result the
remaining threads will be cancelled. Now a thread which we
want to cancel is termed as target thread. Thread
cancellation can be performed in two ways:

Asynchronous Cancellation: In asynchronous
cancellation, a thread is employed to terminate the target
thread instantly.

Deferred Cancellation: In deferred cancellation, the target
thread is scheduled to check itself at regular interval
whether it can terminate itself or not.

3. Signal Handling

Signal handling is more convenient in the single-threaded
program as the signal would be directly forwarded to the
process. But when it comes to multithreaded program, the
issue arrives to which thread of the program the signal
should be delivered. The issue of an asynchronous signal is
resolved up to some extent in most of the multithreaded
UNIX system. Here the thread is allowed to specify which

signal it can accept and which it cannot. However, the
Window operating system does not support the concept of
the signal instead it uses asynchronous procedure call
(ACP) which is similar to the asynchronous signal of the
UNIX system. UNIX allow the thread to specify which signal
it can accept and which it will not whereas the ACP is
forwarded to the specific thread.

4. Thread Pool

When a user requests for a webpage to the server, the
server creates a separate thread to service the request.
Although the server also has some potential issues.
Consider if we do not have a bound on the number of
actives thread in a system and would create a new thread
for every new request then it would finally result in
exhaustion of system resources. We are also concerned
about the time it will take to create a new thread. It must not
be that case that the time require to create a new thread is
more than the time required by the thread to service the
request and then getting discarded as it would result in
wastage of CPU time.

5. Thread Specific data

We all are aware of the fact that the threads belonging to
the same process share the data of that process. Here the
issue is what if each particular thread of the process needs
its own copy of data. So the specific data associated with
the specific thread is referred to as thread-specific data.
Consider a transaction processing system, here we can
process each transaction in a different thread. To determine
each transaction uniquely we will associate a unique
identifier with it. Which will help the system to identify each
transaction uniquely.

6. Security Issues

Yes, there can be security issues because of extensive
sharing of resources between multiple threads.

B)ans: Semaphore:

 Semaphore is simply a variable that is non-negative and
shared between threads. A semaphore is a signaling
mechanism, and a thread that is waiting on a semaphore
can be signaled by another thread. It uses two atomic
operations, 1) Wait, and 2) Signal for the process
synchronization.

Properties of Semaphore:

1. It's simple and always have a non-negative Integer value.

2. Works with many processes.

3. Can have many different critical sections with different
semaphores.

4. Each critical section has unique access semaphores.

5. Can permit multiple processes into the critical section
atonce, if desirable.

C)ans: Worst Fit:

Worst Fit allocates a process to the partition which is largest
sufficient among the freely available partitions available in the main
memory. If a large process comes at a later stage, then memory will

not have space to accommodate it. In this allocation technique,
the process traverses the whole memory and always search
for the largest hole/partition, and then the process is placed
in that hole/partition. It is a slow process because it has to
traverse the entire memory to search the largest hole. Since
this process chooses the largest hole/partition, therefore
there will be large internal fragmentation. Now, this internal
fragmentation will be quite big so that other small processes
can also be placed in that leftover partition.

 “THE END”

