
1 | P a g e

Final Assessment

Submitted To:

Renea Chowdhury

Lecturer, Department of Computer Science & Engineering

Victoria University of Bangladesh

Submission Date: 08 October, 2022

Md Bakhtiar Chowdhury

ID: 2121210061

Department: CSE

Semester: Summer -2022

Batch: 21th

Course Title: Operating System

Concepts

Course Code: CSI 231

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

2 | P a g e

Answer to the question no 1(a)

What is valid bit and invalid bit?

Answer:

valid bit : - A bit of information that indicates whether the data in a block is valid

(1) or not (0).

a bit used in caches and virtual memories that records whether the cached item or

page contains valid data.

indicates that the associated page is in the process’ logical address space, and is

thus a legal page

invalid bit: “invalid” indicates that the page is not in the process’ logical address

space

• With each page table entry, a valid–invalid bit is associated

• (1 is in-memory, 0 is not-in-memory)

• Initially, valid-invalid but is set to 0 on all entries.

• Example of a page table snapshot.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

3 | P a g e

Frame # valid-invalid bit

 1

 1

 1

 1

 0

⁝

 0

 0

Answer to the question no 1(b)

Write down the architecture of Segmentation with an example.

Answer:

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

4 | P a g e

A Table that is used to store the information of all segments of the process is

commonly known as Segment Table. Generally, there is no simple relationship

between logical addresses and physical addresses in this scheme.

• The mapping of a two-dimensional Logical address into a one-dimensional

Physical address is done using the segment table.

• This table is mainly stored as a separate segment in the main memory.

• The table that stores the base address of the segment table is commonly

known as the Segment table base register (STBR)

In the segment table each entry has :

1. Segment Base/base address: The segment base mainly contains the

starting physical address where the segments reside in the memory.

2. Segment Limit: The segment limit is mainly used to specify the length of

the segment.

Segment Table Base Register(STBR) The STBR register is used to point the

segment table's location in the memory.

Segment Table Length Register(STLR) This register indicates the number of

segments used by a program. The segment number s is legal if s<STLR

• Protection

• With each entry in segment table associate:

o validation bit = 0 => illegal segment

o read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at segment

level

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

5 | P a g e

• Since segments vary in length, memory allocation is a dynamic storage-

allocation problem

• A segmentation example is shown in the following Diagram

Example of Segmentation

Given below is the example of the segmentation, There are five segments

numbered from 0 to 4. These segments will be stored in Physical memory as

shown. There is a separate entry for each segment in the segment table which

contains the beginning entry address of the segment in the physical memory(

denoted as the base) and also contains the length of the segment(denoted as

limit).

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

6 | P a g e

Segment 2 is 400 bytes long and begins at location 4300. Thus in this case a

reference to byte 53 of segment 2 is mapped onto the location 4300

(4300+53=4353). A reference to segment 3, byte 85 is mapped to 3200(the base

of segment 3)+852=4052.

A reference to byte 1222 of segment 0 would result in the trap to the OS, as the

length of this segment is 1000 bytes.

Answer to the question no 1(c)

What is Physical address?

Answer:

Physical Address: In computing, physical address refers to a memory address or

the location of a memory cell in the main memory. It is used by both hardware and

software for accessing data. Software, however, does not use physical addresses

directly; instead, it accesses memory using a virtual address. A hardware

component known as the memory management unit (MMU) is responsible for

translating a virtual address to a physical address.

In networking, physical address refers to a computer's MAC address, which is a

unique identifier associated with a network adapter that is used for identifying a

computer in a network.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

7 | P a g e

Answer to the question no 2(a)

Consider the following set of processes, with the length of CPU burst time

given in 7 milliseconds.

1) FCFS

P1 P2 P3 P4 P5

0 10 11 13 14 19

Average Waiting Time: (0+9+9+10+10)/5= 7.6

Average Finish/Completion Time: (10+11+13+14+19)/5=13.4

Average Turnaround Time: (10+10+11+11+15/5= 11.4

Job Arrival Time Burst Time Completion Time Turnaround Time Waiting Time

P1 0 10 10 10 0

P2 1 1 11 10 9

P3 2 2 13 11 9

P4 3 1 14 11 10

P5 4 5 19 15 10

Average 57 / 5 = 11.4 38 / 5 = 7.6

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

8 | P a g e

2) SJF- Non-preemptive

P1 P2 P4 P3 P5

0 10 11 12 14 19

Average Waiting Time: (0+9+10+8+10)/5= 7.4

Average Finish/Completion Time: (10+11+14+12+19)/5=13.2

Average Turnaround Time: (10+10+12+9+15)/5= 11.2

Job Arrival Time Burst Time Completion Time Turnaround Time Waiting Time

P1 0 10 10 10 0

P2 1 1 11 10 9

P3 2 2 14 12 10

P4 3 1 12 9 8

P5 4 5 19 15 10

Average 56 / 5 = 11.2 37 / 5 = 7.4

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

9 | P a g e

3) Priority- Preemptive

P1 P2 P1 P5 P1 P3 P4

0 1 2 4 9 16 18 19

Average Waiting Time: (6+0+14+15+0)/5= 7

Average Finish/Completion Time: (16+2+18+19+9)/5=12.8

Average Turnaround Time: (16+1+16+16+5)/5= 10.8

Job Arrival Time Burst Time Completion Time Turnaround Time Waiting Time

P1 0 10 16 16 6

P2 1 1 2 1 0

P3 2 2 18 16 14

P4 3 1 19 16 15

P5 4 5 9 5 0

Average 54 / 5 = 10.8 35 / 5 = 7

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

10 | P a g e

4.1) Round Robin with Time Quantum 2

P1 P2 P3 P1 P4 P5 P1 P5 P1 P5 P1

0 2 3 5 7 8 10 12 14 16 17 19

Average Waiting Time: (9 + 1 + 1+4+8)/5= 4.6

Average Finish/Completion Time: (19+3+5+8+17)/5=10.4

Average Turnaround Time: (19+2+3+5+13)/5= 8.4

Job Arrival Time Burst Time Completion Time Turnaround Time Waiting Time

P1 0 10 19 19 9

P2 1 1 3 2 1

P3 2 2 5 3 1

P4 3 1 8 5 4

P5 4 5 17 13 8

Average 42 / 5 = 8.4 23 / 5 = 4.6

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

11 | P a g e

4.2) Round Robin with Time Quantum 4

P1 P2 P3 P4 P5 P1 P5 P1

0 4 5 7 8 12 16 17 19

Average Waiting Time: (9 + 3 + 3+4+8)/5= 5.4

Average Finish/Completion Time: (19+5+7+8+17)/5=11.2

Average Turnaround Time: (9+3+3+4+8)/5= 5.4

Job Arrival Time Burst Time Completion Time Turnaround Time Waiting Time

P1 0 10 19 19 9

P2 1 1 5 4 3

P3 2 2 7 5 3

P4 3 1 8 5 4

P5 4 5 17 13 8

Average 46/ 5 = 9.2 27 / 5 = 5.4

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

12 | P a g e

Answer to the question no 2(b)

Discuss the Multilevel feedback queue scheduler

Answer:

Multilevel Feedback Queue Scheduling: Multilevel Feedback Queue Scheduling

(MLFQ) CPU Scheduling is like Multilevel Queue (MLQ) Scheduling but in this

process can move between the queues. And thus, much more efficient than

multilevel queue scheduling.

In general, a multilevel feedback queue scheduler is defined by the following

parameters:

• The number of queues.

• The scheduling algorithm for each queue.

• The method used to determine when to upgrade a process to a higher-priority

queue.

• The method used to determine when to demote a process to a lower-priority

queue.

• The method used to determine which queue a process will enter when that

process needs service.

Example of Multilevel Feedback Queue

Three queues:

– Q0 – RR with time quantum 8 milliseconds

–Q1 – RR time quantum 16 milliseconds

–Q2 – FCFS

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

13 | P a g e

Explanation: First of all, suppose that queues 1 and 2 follow round robin with time

quantum 8 and 16 respectively and queue 3 follows FCFS. One of the

implementations of Multilevel Feedback Queue Scheduling is as follows:

• If any process starts executing then firstly it enters queue 1.

• In queue 1, the process executes for 8 unit and if it completes in these 8 units

or it gives CPU for I/O operation in these 8 units unit than the priority of this

process does not change, and if for some reasons it again comes in the ready

queue than it again starts its execution in the Queue 1.

• If a process that is in queue 1 does not complete in 8 units then its priority gets

reduced and it gets shifted to queue 2.

• Above points 2 and 3 are also true for processes in queue 2 but the time

quantum is 16 units. Generally, if any process does not complete in a given

time quantum then it gets shifted to the lower priority queue.

• After that in the last queue, all processes are scheduled in an FCFS manner.

• It is important to note that a process that is in a lower priority queue can only

execute only when the higher priority queues are empty.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

14 | P a g e

• Any running process in the lower priority queue can be interrupted by a

process arriving in the higher priority queue.

Also, the above implementation may differ for the example in which the last queue

will follow Round-robin Scheduling.

In the above Implementation, there is a problem and that is; Any process that is in

the lower priority queue has to suffer starvation due to some short processes that are

taking all the CPU time.

And the solution to this problem is : There is a solution that is to boost the priority

of all the process after regular intervals then place all the processes in the highest

priority queue.

Answer to the question no 3(a)

Write down the characterization of Deadlock.

Answer:

Deadlock characterization describes the distinctive features that are the cause of

deadlock occurrence. Deadlock is a condition in the multiprogramming

environment where the executing processes get stuck in the middle of execution

waiting for the resources that have been held by the other waiting processes

thereby preventing the execution of the processes.

Deadlock can arise if four conditions hold simultaneously:

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

15 | P a g e

➢ Mutual Exclusion: Only one process at a time can use a resource. If

another process requests that resource, the requesting process must be

delayed until the resource has been released.

➢ Hold and Wait: A process that holding at least one resource is waiting to

acquire additional resources held by other processes.

➢ No Preemption: A resource can be released only voluntarily by the process

holding it, after that process has completed its task.

➢ Circular Wait: there exists a set {P0, P1, …, P0} of waiting processes such

that-

P0 is waiting for a resource that is held by P1,

P1 is waiting for a resource that is held by P2, …, Pn–1is waiting for a

resource that is held by Pn, and P0is waiting for a resource that is held by

P0.

Answer to the question no 3(b)

Write down the steps to prevent Deadlock.

Answer:

Deadlock Prevention: Deadlocks can be prevented by preventing at least one of

the four required conditions-

Mutual Exclusion:

• Shared resources such as read-only files do not lead to deadlocks.

• Unfortunately, some resources, such as printers and tape drives, require

exclusive access by a single process.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

16 | P a g e

Hold and Wait: To prevent this condition processes must be prevented from

holding one or more resources while simultaneously waiting for one or more

others. There are several possibilities for this-

• Require that all processes request all resources at one time. This can be

wasteful of system resources if a process needs one resource early in its

execution and doesn't need some other resource until much later.

• Require that processes holding resources must release them before

requesting new resources, and then re-acquire the released resources along

with the new ones in a single new request. This can be a problem if a

process has partially completed an operation using a resource and then fails

to get it re-allocated after releasing it.

• Either of the methods described above can lead to starvation if a process

requires one or more popular resources.

No Preemption: Preemption of process resource allocations can prevent this

condition of deadlocks, when it is possible.

• One approach is that if a process is forced to wait when requesting a new

resource, then all other resources previously held by this process are

implicitly released, (preempted), forcing this process to re-acquire the old

resources along with the new resources in a single request, similar to the

previous discussion.

• Another approach is that when a resource is requested and not available,

then the system looks to see what other processes currently have those

resources and are themselves blocked waiting for some other resource. If

such a process is found, then some of their resources may get preempted

and added to the list of resources for which the process is waiting.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

17 | P a g e

• Either of these approaches may be applicable for resources whose states

are easily saved and restored, such as registers and memory, but are

generally not applicable to other devices such as printers and tape drives.

Circular Wait:

• One way to avoid circular wait is to number all resources, and to require that

processes request resources only in strictly increasing (or decreasing)

order.

• In other words, in order to request resource Rj, a process must first release

all Ri such that i >= j.

• One big challenge in this scheme is determining the relative ordering of the

different resources

Answer to the question no 3(c)

What is Safe state?

Answer:

A state is safe if the system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock.

▪ When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state.

▪ System is in safe state if there exists a safe sequence of all processes.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

18 | P a g e

▪ Sequence is safe if for each Pi , the resources that Pi can still request can

be satisfied by currently available resources + resources held by all the Pj ,

with j<I

o If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished.

o When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate.

o When Pi terminates, Pi+1 can obtain its needed resources, and so

on.

Answer to the question no 5(a)

What are the issues of Multithreading?

Answer:

Multithreading is a model of program execution that allows for multiple threads to

be created within a process, executing independently but concurrently sharing

process resources. Depending on the hardware, threads can run fully parallel if

they are distributed to their own CPU core.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

19 | P a g e

Below we have mentioned a few issues related to multithreading. Well, it's an old

saying, All good things, come at a price.

Thread Cancellation:

 Thread cancellation means terminating a thread before it has finished working.

There can be two approaches for this, one is Asynchronous cancellation, which

terminates the target thread immediately. The other is Deferred cancellation

allows the target thread to periodically check if it should be cancelled.

Signal Handling:

Signals are used in UNIX systems to notify a process that a particular event has

occurred. Now in when a Multithreaded process receives a signal, to which thread

it must be delivered? It can be delivered to all, or a single thread.

fork() System Call:

fork() is a system call executed in the kernel through which a process creates a

copy of itself. Now the problem in Multithreaded process is, if one thread forks, will

the entire process be copied or not?

Security Issues:

Yes, there can be security issues because of extensive sharing of resources

between multiple threads. There are many other issues that you might face in a

multithreaded process, but there are appropriate solutions available for them.

Pointing out some issues here was just to study both sides of the coin

Answer to the question no 5(b)

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

20 | P a g e

What is Semaphore? Write down the properties of Semaphore.

Answer:

Semaphore is simply a variable that is non-negative and shared between

threads. A semaphore is a signaling mechanism, and a thread that is waiting on

a semaphore can be signaled by another thread. It uses two atomic operations,

1) Wait

2) Signal for the process synchronization.

A semaphore either allows or disallows access to the resource, which depends

on how it is set up.

The classical definitions of wait and signal are:

• Wait: Decrements the value of its argument S, as soon as it would become

non-negative (greater than or equal to 1).

• Signal: Increments the value of its argument S, as there is no more process

blocked on the queue.

Properties of Semaphore:

• It always has a non-negative integer value (i.e., 0, 1, ...).

• It can be initialized to a non-negative integer value.

• A process can do a P operation (or "wait") on S, denoted P(S). P(S)

atomically decrements S by 1 only when S>0 holds; the process waits until

S>0 holds.

• A process can do a V operation (or "signal") on S, denoted V(S). V(S)

atomically increments S by 1.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSI 231, Course Title: Operating System Concepts

21 | P a g e

• Starvation-freedom: If a process is at P(S), then it eventually completes

execution of the P(S) provided

o S>0 holds continuously after some point in time, or

o S>0 holds repeatedly (because V(S) is repeatedly done).

• Can have many different critical sections with different semaphores.

• Each critical section has unique access semaphores.

• Can permit multiple processes into the critical section at once, if desirable.

Answer to the question no 5(c)

What is Worst Fit?

Answer:

Worst Fit :Worst Fit allocates a process to the partition which is largest sufficient

among the freely available partitions available in the main memory. If a large

process comes at a later stage, then memory will not have space to accommodate

it.

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

(according to simulations)

Worst fit works in the following way, for any given process Pn

The algorithms search sequentially starting from first memory block and searches

for the memory block that fulfills the following condition –

• Can accommodate the process size

• Leaves the largest wasted space (fragmentation) after the process is

allocated to given memory block

>>>>>END<<<<<

