
Final Assessment │ Summer 2022

Md. Shafayet Hossain

CSE- 21st Batch

Operating System Concepts

Code: CSI 231│ID: 2121210071

Answer to the Question no- 01

(a)

 Valid bit and Invalid bit:

Valid indicates that the associated page is in the logical address space.

Invalid indicates that the associated page is not in logical address space.

(b)

 Architecture of Segmentation:

Logical address consists of a two tuple: <segment-number, offset>,

 Segment table – maps two-dimensional physical addresses;

each table entry has: base – contains the starting physical address where the

segments reside in memory.

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in

memory.

 Segment-table length register (STLR) indicates number of segments used by a

program;

segment number s is legal if s < STLR

 Protection

 With each entry in segment table associate:

validation bit = 0 illegal segment

read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment

level.

 Since segments vary in length, memory allocation is a dynamic storage-

allocation problem.

 A segmentation example is shown in the following

Diagram –

 Logical Address Space Segment table Physical Memory

(C)

 Physical address – Physical address is that address which is seen by

the memory unit.

1400

Segment 0
2400

3200

Segment 3
4300

Segment 2
4700

Segment 4
5700

6300

Segment 1
6700

 Limit Base

0 1000 1400

1 400 6300

2 400 4300

3 1100 3200

4 1000 4700

Sub

routine

Seg- 0

Segme

nt 0

Stack

Seg-3

Symbol

Table

Seg-4

Main Program

Seg-2

SQRT

Seg-1

Answer to the Question no- 02

(a)

Given set of Processes with the length of CPU burst time given in

Milliseconds:

Process Arrival Time Burst Time Priority

P1 0 10 3

P2 1 1 1

P3 2 2 4

P4 3 1 5

P5 4 5 2

1. FCFS

2. SJF- Non Preemptive

3. Priority- Preemptive

4. Round Robin with time Quantum 2 & 4

1. FCFS Gantt Chart

P1 P2 P3 P4 P5

 0 10 11 13 14 19

Process Arrival
Time

Burst
Time

Finish
Time

Turnaround
Time

Waiting
Time

P1 0 10 10 10 0

P2 1 1 11 10 9

P3 2 2 13 11 9

P4 3 1 14 11 10

P5 4 5 19 15 10

 Average 57/5=11.4 ms 38/5=7.6 ms

2. SJF- Non Preemptive Gantt Chart

P1 P2 P4 P3 P5

 0 10 11 12 14 19

Process Arrival
Time

Burst
Time

Finish
Time

Turnaround
Time

Waiting
Time

P1 0 10 10 10 0

P2 1 1 11 10 9

P3 2 2 14 12 10

P4 3 1 12 9 8

P5 4 5 19 15 10

 Average 56/5=11.2ms 37/5=7.4ms

3. Priority Preemptive Gantt Chart

P1 P2 P3 P4 P5

 0 10 11 13 14 19

Process Arrival
Time

Burst
Time

Finish
Time

Turnaround
Time

Waiting
Time

P1 0 10 10 10 0

P2 1 1 11 10 9

P3 2 2 13 11 9

P4 3 1 14 11 10

P5 4 5 19 15 10

 Average 57/5=11.4ms 38/5= 7.6ms

4. Round Robin Gantt Chart (Time Quantum 2)

P1 P2 P3 P1 P4 P5 P1 P5 P1 P5 P1

 0 2 3 5 7 8 10 12 14 16 17 19

Process Arrival
Time

Burst
Time

Finish
Time

Turnaround
Time

Waiting
Time

P1 0 10 19 19 9

P2 1 1 3 2 1

P3 2 2 5 3 1

P4 3 1 8 5 4

P5 4 5 17 13 8

 Average 42/5=8.4 ms 23/5=4.6 ms

5. Round Robin Gantt Chart (Time Quantum 4)

P1 P2 P3 P4 P5 P1 P5 P1

0 4 5 7 8 12 16 17 19

Process Arrival
Time

Burst
Time

Finish
Time

Turnaround
Time

Waiting
Time

P1 0 10 19 19 9

P2 1 1 5 4 3

P3 2 2 7 5 3

P4 3 1 8 5 4

P5 4 5 17 13 8

 Average 46/5=9.2 ms 27/5=5.4ms

Answer to the Question no- 02

(b)

 Multilevel feedback queue:

A multilevel feedback queue is a scheduling algorithm. Scheduling algorithms are
designed to have some process running at all times to keep the central
processing unit (CPU) busy. The multilevel feedback queue extends standard
algorithms with the following design requirements:

1. Separate processes into multiple ready queues based on their need for the
processor.

2. Give preference to processes with short CPU bursts.

3. Give preference to processes with high I/O bursts.

https://en.wikipedia.org/wiki/I/O_bound

Answer to the Question no- 03

(a)

 Characterization of Deadlock:

When all four following requirements are true at once, deadlock can result-

 Mutual exclusion: only one process at a time can use a resource.

 Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes.

 No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task.

 Circular wait: there exists a set {P0, P1, ..., P0} of waiting processes such that
P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is
held by P2, ..., Pn–1 is waiting for a resource that is held by Pn, and P0 is waiting
for a resource that is held by P0.

(b)

 Steps to Deadlock Prevention:

 Mutual Exclusion – not required for sharable resources; must hold for non-
sharable resources.

 Hold and Wait – must guarantee that whenever a process requests a
resource, it does not hold any other resources.

 Require process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none.

 Low resource utilization; starvation possible.

 No Preemption –

 If a process that is holding some resources requests another resource that
cannot be immediately allocated to it, then all resources currently being
held are released.

 Preempted resources are added to the list of resources for which the
process is waiting.

 Process will be restarted only when it can regain its old resources, as well
as the new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource types, and require that
each process requests resources in an increasing order of enumeration.

(c)

 Safe State:

When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state.

System is in safe state if there exists a safe sequence of all processes.

 Sequence <P1, P2, ..., Pn> is safe if for each Pi, the resources that Pi can
still request can be satisfied by currently available resources + resources
held by all the Pj, with j<I.

 If Pi resource needs are not immediately available, then Pi can wait until all
Pj have finished.

 When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate.

 When Pi terminates, Pi+1 can obtain its needed resources, and so on.

 If a system is in safe state →→ no deadlocks.
 If a system is in unsafe state →→ possibility of deadlock.
 Avoidance→→ensure that a system will never enter an unsafe state.

Answer to the Question no- 05

(a)

 Multi-threading Issues:

There are a few multi-threading-related problems below. The old proverb "All
good things, come at a price" applies here.

 Thread Cancellation:

Terminating a thread before it has finished working is referred to as thread
cancellation. There are two possible strategies for this. The first is asynchronous
cancellation, which immediately kills the target thread. The other is deferred
cancellation, which enables the target thread to check for cancellation on a
regular basis.

 Signal Handling:

In UNIX systems, signals are used to inform a process that a specific event has
taken place. Which thread must a signal be given to when a multi-threaded
process gets one? It can be sent to everyone or single thread.

 Fork System Call:

A process can make a replica of itself by using the system function fork, which is
carried out in the kernel. The issue with multi-threaded processes right now is
whether or not the entire process will be replicated if one thread forks.

 Security Issues:

Yes, there may be security concerns due to the substantial resource sharing
between numerous threads.

 (b)

Semaphore:

A semaphore is an integer variable, shared among multiple processes. The main
aim of using a semaphore is process synchronization and access control for a
common resource in a concurrent environment.

Properties of Semaphore:

 It's simple and always have a non-negative Integer value.

 Works with many processes.

 Can have many different critical sections with different semaphores.

 Each critical section has unique access semaphores.

 Can permit multiple processes into the critical section at once, if desirable.

(c)

Worst Fit:

Worst Fit allocates a process to the partition which is largest sufficient among
the freely available partitions available in the main memory. If a large process
comes at a later stage, then memory will not have space to accommodate it.

The End

