

Final Assessment

Submitted To:

Umme Khadiza Tithi

Lecturer, Department of Computer Science & Engineering

Victoria University of Bangladesh

Submission Date: 08 October, 2022

Md Bakhtiar Chowdhury

ID: 2121210061

Department: CSE

Semester: Summer -2022

Batch: 21th

Course Title: Computer Organization

& Assembly Programming

Course Code: CSE 233

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

2 | P a g e

Answer to the question no 1(a)

Write Down number of operands in assembly language?

Answer:

Number of operands

Instruction sets may be categorized by the maximum number of operands explicitly

specified in instructions.

(In the examples that follow, a, b, and c are (direct or calculated) addresses

referring to memory cells, while reg1 and so on refer to machine registers.)

• 0-operand (zero-address machines), so called stack machines: All

arithmetic operations take place using the top one or two positions on the

stack: push a, push b, add, pop c. For stack machines, the terms "0-

operand" and "zero-address" apply to arithmetic instructions, but not to all

instructions, as 1-operand push and pop instructions are used to access

memory.

• 1-operand (one-address machines), so called accumulator machines,

include early computers and many small microcontrollers: most instructions

specify a single right operand (that is, constant, a register, or a memory

location), with the implicit accumulator as the left operand (and the

destination if there is one): load a, add b, store c. A related class is practical

stack machines which often allow a single explicit operand in arithmetic

instructions: push a, add b, pop c.

• 2-operand — many CISC and RISC machines fall under this category:

o CISC — often load a,reg1; add reg1,b; store reg1,c on machines that

are limited to one memory operand per instruction; this may be load

and store at the same location.

o CISC — move a->c; add c+=b

o RISC — Requiring explicit memory loads, the instructions would be:

load a,reg1; load b,reg2; add reg1,reg2; store reg2,c

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

3 | P a g e

• 3-operand, allowing better reuse of data:

o CISC — It becomes either a single instruction: add a,b,c, or more

typically: move a,reg1; add reg1,b,c as most machines are limited to

two memory operands.

o RISC — arithmetic instructions use registers only, so explicit 2-

operand load/store instructions are needed: load a,reg1; load b,reg2;

add reg1+reg2- >reg3; store reg3,c; unlike 2-operand or 1-operand,

this leaves all three values a, b, and c in registers available for further

reuse.

• more operands—some CISC machines permit a variety of addressing

modes that allow more than 3 operands (registers or memory accesses),

such as the VAX "POLY" polynomial evaluation instruction.

Due to the large number of bits needed to encode the three registers of a 3-

operand instruction, RISC processors using 16-bit instructions are invariably 2-

operand machines, such as the Atmel AVR, the TI MSP430, and some versions of

the ARM Thumb. RISC processors using 32-bit instructions are usually 3-operand

machines, such as processors implementing the Power Architecture, the SPARC

architecture, the MIPS architecture, the ARM architecture, and the AVR32

architecture.

Each instruction specifies some number of operands (registers, memory locations,

or immediate values) explicitly. Some instructions give one or both operands

implicitly, such as by being stored on top of the stack or in an implicit register. If

some of the operands are given implicitly, fewer operands need be specified in the

instruction. When a "destination operand" explicitly specifies the destination, an

additional operand must be supplied. Consequently, the number of operands

encoded in an instruction may differ from the mathematically necessary number of

arguments for a logical or arithmetic operation (the arity). Operands are either

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

4 | P a g e

encoded in the "opcode" representation of the instruction, or else are given as

values or addresses following the instruction.

Answer to the question no 1(b)

Write Down Difference between programming, Low-level, Higher -level

language?

Answer:

Programming language

Programming languages provide various ways of specifying programs for

computers to run. Unlike natural languages, programming languages are designed

to permit no ambiguity and to be concise. They are purely written languages and

are often difficult to read aloud. They are generally either translated into machine

code by a compiler or an assembler before being run, or translated directly at run

time by an interpreter.

On the basis of this level of abstraction, there are two types of programming

languages:

 Low-level language

 High-level language

Here is the difference between low-level & higher-level language:

Low-level language High-Level Language

It is considered as a machine-friendly

language.

It can be considered as a programmer-

friendly language.

It requires an assembler that would

translate instructions.

It requires a compiler/interpreter to be

translated into machine code.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

5 | P a g e

It is not portable. It can be ported from one location to

another.

It is difficult to understand. It is easy to understand.

It is difficult to debug. It is easy to debug.

It consumes less memory. It is less memory efficient, i.e., it

consumes more memory in

comparison to low-level languages.

Answer to the question no 1(c)

Graphic 7 inches X 5 inches with 600dpi. Calculate the amount of memory

required to store the graphic?

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

6 | P a g e

Answer to the question no 2(a)

Define DMA controllers in a computer System?

Answer:

Basically for high speed I/O devices, the device interface transfer data directly to or from

the memory without informing the processor. When interrupts are used, additional

overhead involved with saving and restoring the program counter and other state

information. To transfer large blocks of data at high speed, an alternative approach is

used. A special control unit will allow transfer of a block of data directly between an

external device and the main memory, without continuous intervention by the processor.

DMA controller is a control circuit that performs DMA transfers, is a part of the I/O device

interface. It performs functions that normally be carried out by the processor. DMA

controller must increment the memory address and keep track of the number of transfers.

The operations of DMA controller must be under the control of a program executed by the

processor. To initiate the transfer of block of words, the processor sends the starting

address, the number of words in the block and the direction of the transfer. On receiving

this information, DMA controller

transfers the entire block and informs the processor by raising an interrupt signal. While

a DMA transfer is taking place, the processor can be used to execute another program.

After the DMA transfer is completed, the processor can return to the program that

requested the transfer.

Three registers in a DMA interface are:

• Starting address

• Word count

• Status and control flag

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

7 | P a g e

A conflict may arise if both the processor and a DMA controller or two DMA controllers try

to use the bus at the same time to access the main memory. To resolve this, an arbitration

procedure is implemented on the bus to coordinate the activities of all devices requesting

memory transfers.

Answer to the question no 2(b)

Design simple units of ALU and characteristics of ALU?

Answer:

In the computer system, ALU is a main component of the central processing unit, which

stands for arithmetic logic unit and performs arithmetic and logic operations. It is also

known as an integer unit (IU) that is an integrated circuit within a CPU or GPU, which is

the last component to perform calculations in the processor. It has the ability to perform

all processes related to arithmetic and logic operations such as addition, subtraction, and

shifting operations, including Boolean comparisons (XOR, OR, AND, and NOT

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

8 | P a g e

operations). Also, binary numbers can accomplish mathematical and bitwise operations.

The arithmetic logic unit is split into AU (arithmetic unit) and LU (logic unit). The operands

and code used by the ALU tell it which operations have to perform according to input data.

When the ALU completes the processing of input, the information is sent to the computer's

memory.

Except performing calculations related to addition and subtraction, ALUs handle the

multiplication of two integers as they are designed to execute integer calculations; hence,

its result is also an integer. However, division operations commonly may not be performed

by ALU as division operations may produce a result in a floating-point number. Instead,

the floating-point unit (FPU) usually handles the division operations; other non-integer

calculations can also be performed by FPU.

Additionally, engineers can design the ALU to perform any type of operation. However,

ALU becomes more costly as the operations become more complex because ALU

destroys more heat and takes up more space in the CPU. This is the reason to make

powerful ALU by engineers, which provides the surety that the CPU is fast and powerful

as well.

The calculations needed by the CPU are handled by the arithmetic logic unit (ALU); most

of the operations among them are logical in nature. If the CPU is made more powerful,

which is made on the basis of the ALU is designed. Then it creates more heat and takes

more power or energy. Therefore, it must be moderation between how complex and

powerful ALU is and not be more costly. This is the main reason the faster CPUs are

more costly; hence, they take much power and destroy more heat. Arithmetic and logic

operations are the main operations that are performed by the ALU; it also performs bit-

shifting operations.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

9 | P a g e

Although the ALU is a major component in the processor, the ALU's design and function

may be different in the different processors. For case, some ALUs are designed to

perform only integer calculations, and some are for floating-point operations. Some

processors include a single arithmetic logic unit to perform operations, and others may

contain numerous ALUs to complete calculations. The operations performed by ALU are:

o Logical Operations: The logical operations consist of NOR, NOT, AND, NAND,

OR, XOR, and more.

o Bit-Shifting Operations: It is responsible for displacement in the locations of the

bits to the by right or left by a certain number of places that are known as a

multiplication operation.

o Arithmetic Operations: Although it performs multiplication and division, this

refers to bit addition and subtraction. But multiplication and division operations are

more costly to make. In the place of multiplication, addition can be used as a

substitute and subtraction for division.

A basic example of an operand would be a variable declared in a program that would

change value because of operations. For example, a programmer can create a variable

x. He can set the value of x at anything, for example, one. Then, that value can be

changed using an operator, for example, by entering something like x=x +3. The value

of x then becomes 4.

Different operators continue to change this operand for programming and computing

purposes.

Calling an operand an 'object’ also shows how the evolution of computer programming

has treated this principle.

Through the introduction of something called 'object-oriented programming,’ these basic

variables, which are the operands in many computer programs, have been invested with

more detailed properties and characteristics, through ideas like programmed

programming classes and arrays.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

10 | P a g e

Characteristics of ALU

Arithmetic and logical units, or ALU, carry out operations including addition, subtraction,

multiplication, and division. The task of controlling computer functions is carried out by

the control unit, or CU. It oversees and provides all computer components with the

necessary instructions.

Explanation:

The CU, or control unit, has the following characteristics:

• This component of the CPU is in charge of all operations that are carried out.

• It is in charge of directing the system to carry out commands.

• It facilitates communication between the arithmetic logical unit and the memory.

• It also helps with the necessary loading of information and instructions from the

secondary memory to the main memory.

The following are the ALU's characteristics:

• The ALU is in charge of carrying out all logical and mathematical processes.

• The following are some examples of arithmetic operations: addition, subtraction,

multiplication, and division.

• The following list of logical operations includes comparisons of numbers, letters,

and/or special characters.

• The Equal-to conditions, Less-than conditions, and Greater-than conditions are

likewise handled by the ALU.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

11 | P a g e

Answer to the question no 2(c)

Convert 5G.AB216 into an equivalent binary number?

Here,

The hexadecimal number given is (5𝐹. 𝐴𝐵2)16

Now,

4-bit binary equivalent is

5 = 0101

F = 1111

A = 1010

B = 1011

2 = 0010

Hence, the (𝟓𝑭.𝑨𝑩𝟐)𝟏𝟔hexadecimal number’s equivalent binary number is

(𝟎𝟏𝟎𝟏𝟏𝟏𝟏𝟏. 𝟏𝟎𝟏𝟎𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟎)𝟐

Answer to the question no 3(a)

describe current usage of assembly language?

Answer:

There have always been debates over the usefulness and performance of assembly

language relative to high-level languages. Assembly language has specific niche uses

where it is important; see below. But in general, modern optimizing compilers are claimed

to render highlevel languages into code that can run as fast as hand-written assembly,

despite the counterexamples that can be found. The complexity of modern processors

and memory sub-systems makes effective optimization increasingly difficult for compilers,

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

12 | P a g e

as well as assembly programmers. Moreover, and to the dismay of efficiency lovers,

increasing processor performance has meant that most CPUs sit idle most of the time,

with delays caused by predictable bottlenecks such as I/O operations and paging. This

has made raw code execution speed a non-issue for many programmers.

There are some situations in which developers might choose to use assembly language:

• A stand-alone executable of compact size is required that must execute without

recourse to the run-time components or libraries associated with a high-level

language; this is perhaps the most common situation. For example, firmware for

telephones, automobile fuel and ignition systems, air-conditioning control systems,

security systems, and sensors.

• Code that must interact directly with the hardware, for example in device drivers

and interrupt handlers

• Programs that need to use processor-specific instructions not implemented in a

compiler. A common example is the bitwise rotation instruction at the core of many

encryption algorithms.

• Programs that create vectorized functions for programs in higher-level languages

such as C. In the higher-level language this is sometimes aided by compiler

intrinsic functions which map directly to SIMD mnemonics, but nevertheless result

in a one-to-one assembly conversion specific for the given vector processor.

• Programs requiring extreme optimization, for example an inner loop in a processor-

intensive algorithm. Game programmers take advantage of the abilities of

hardware features in systems, enabling games to run faster. Also large scientific

simulations require highly optimized algorithms, e.g. linear algebra with BLAS or

discrete cosine transformation (e.g. SIMD assembly version from x264)

• Situations where no high-level language exists, on a new or specialized processor,

for example.

o Programs that need precise timing such as

o real-time programs such as simulations, flight navigation systems, and

medical equipment. For example, in a fly-by-wire system, telemetry must be

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

13 | P a g e

interpreted and acted upon within strict time constraints. Such systems must

eliminate sources of unpredictable delays, which may be created by (some)

interpreted languages, automatic garbage collection, paging operations, or

preemptive multitasking. However, some higher-level languages

incorporate run-time components and operating system interfaces that can

introduce such delays. Choosing assembly or lower-level languages for

such systems gives programmers greater visibility and control over

processing details.

• cryptographic algorithms that must always take strictly the same time to execute,

preventing timing attacks

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

14 | P a g e

Answer to the question no 3(b)

discuss input output in assembly language program?

Answer:

 Input/Output (I/O) instructions are used to input data from peripherals, output data to

peripherals, or read/write input/output controls. Early computers used special hardware

to handle I/O devices. The trend in modern computers is to map I/O devices in memory,

allowing the direct use of any instruction that operates on memory for handling I/O.

• IN Input; MIX; initiate transfer of information from the input device specified into

consecutive locations starting with M, block size implied by unit

• OUT Output; MIX; initiate transfer of information from consecutive locations

starting with M to the output device specified, block size implied by unit

• IOC Input-Output Control; MIX; initiate I/O control operation to be performed by

designated device

• JRED Jump Ready; MIX; Jump if specified unit is ready (completed previous IN,

OUT, or IOC operation); if jump occurs, J-register loaded with the address of the

instruction which would have been next if the jump had not been taken

• JBUS Jump Busy; MIX; Jump if specified unit is not ready (not yet completed

previous IN, OUT, or IOC operation); if jump occurs, J-register loaded with the

address of the instruction which would have been next if the jump had not been

taken

MIX devices

 Information on the devices for the hypothetical MIX processor’s input/output

instructions.

unit

number
peripheral

block

size
control

t Tape unit no. i (0 i 7)
100

words

M=0, tape rewound;

M < 0, skip back M records;

M > 0, skip forward M records

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

15 | P a g e

d
Disk or drum unit

no. d (8 d 15)

100

words

position device according to X-

register (extension)

16 Card reader
16

words

17 Card punch
16

words

18 Printer
24

words

IOC 0(18) skips printer to top of

following page

19 Typewriter and paper tape
14

words
paper tape reader: rewind tape

Answer to the question no 3(c)

describe different type of registers?

Answer:

In Computer Architecture, the Registers are very fast computer memory which are used

to execute programs and operations efficiently. This does by giving access to commonly

used values, i.e., the values which are in the point of operation/execution at that time.

So, for this purpose, there are several different classes of CPU registers which works in

coordination with the computer memory to run operations efficiently.

The sole purpose of having register is fast retrieval of data for processing by CPU.

Though accessing instructions from RAM is comparatively faster with hard drive, it still

isn’t enough for CPU. For even better processing, there are memories in CPU which

can get data from RAM which are about to be executed beforehand. After registers we

have cache memory, which are faster but less faster than registers.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

16 | P a g e

These are classified as given below.

• Accumulator:

This is the most frequently used register used to store data taken from

memory. It is in different numbers in different microprocessors.

• Memory Address Registers (MAR):

It holds the address of the location to be accessed from memory. MAR and

MDR (Memory Data Register) together facilitate the communication of the

CPU and the main memory.

• Memory Data Registers (MDR):

It contains data to be written into or to be read out from the addressed

location.

• General Purpose Registers:

These are numbered as R0, R1, R2…. Rn-1, and used to store temporary

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

17 | P a g e

data during any ongoing operation. Its content can be accessed by

assembly programming. Modern CPU architectures tends to use more GPR

so that register-to-register addressing can be used more, which is

comparatively faster than other addressing modes.

• Program Counter (PC):

Program Counter (PC) is used to keep the track of execution of the program.

It contains the memory address of the next instruction to be fetched. PC

points to the address of the next instruction to be fetched from the main

memory when the previous instruction has been successfully completed.

Program Counter (PC) also functions to count the number of instructions.

The incrementation of PC depends on the type of architecture being used. If

we are using 32-bit architecture, the PC gets incremented by 4 every time to

fetch the next instruction.

• Instruction Register (IR):

The IR holds the instruction which is just about to be executed. The

instruction from PC is fetched and stored in IR. As soon as the instruction in

placed in IR, the CPU starts executing the instruction and the PC points to

the next instruction to be executed.

• Condition code register (CCR) :

Condition code registers contain different flags that indicate the status of

any operation. For instance let’s suppose an operation caused creation of a

negative result or zero, then these flags are set high accordingly. And the

flags are

1. Carry C: Set to 1 if an add operation produces a carry or a subtract

operation produces a borrow; otherwise cleared to 0.

2. Overflow V: Useful only during operations on signed integers.

3. Zero Z: Set to 1 if the result is 0, otherwise cleared to 0.

ID- 2121210061, Name: Md Bakhtiar Chowdhury, Program: BSc in CSE (R)
Course Code: CSE 233, Course Title: Computer Organization & Assembly Programming

18 | P a g e

4. Negate N: Meaningful only in signed number operations. Set to 1 if a

negative result is produced.

5. Extend X: Functions as a carry for multiple precision arithmetic operations.

 These are generally decided by ALU.

So, these are the different registers which are operating for a specific purpose.

>>>>End<<<<

