

Assessment Topic:

Final Assessment

Course Title: Computer Organization & Assembly Language

Course Code: CSE-233

Submitted To:

Umme Khadiza Tithi

Lecturer, Department of Computer Science & Engineering

Victoria University of Bangladesh

Submitted By:

Ruhul Amin

ID: 2120180051

Department: CSE

Semester: Summar-2022

Batch: 18th

Submission Date: 6th October, 2022

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

2 | P a g e

 Question 01 a): Answer:

Operands in assembly language: Instruction sets may be categorized by the maximum number

of operands explicitly specified in instructions.

(In the examples that follow, a, b, and c are (direct or calculated) addresses referring to memory

cells, while reg1 and so on refer to machine registers.)

• 0-operand (zero-address machines), so called stack machines: All arithmetic operations

take place using the top one or two positions on the stack: push a, push b, add, pop c. For

stack machines, the terms "0-operand" and "zero-address" apply to arithmetic

instructions, but not to all instructions, as 1-operand push and pop instructions are used

to access memory.

• 1-operand (one-address machines), so called accumulator machines, include early

computers and many small microcontrollers: most instructions specify a single right

operand (that is, constant, a register, or a memory location), with the implicit accumulator

as the left operand (and the destination if there is one): load a, add b, store c. A related

class is practical stack machines which often allow a single explicit operand in arithmetic

instructions: push a, add b, pop c.

• 2-operand — many CISC and RISC machines fall under this category:

• CISC — often load a, reg1; add reg1, b; store reg1, c on machines that are limited

to one memory operand per instruction; this may be load and store at the same

location

• CISC — move a->c; add c+=b.

• RISC — Requiring explicit memory loads, the instructions would be: load a, reg1;

load b, reg2; add reg1, reg2; store reg2, c

• 3-operand, allowing better reuse of data:

• CISC — It becomes either a single instruction: add a, b, c, or more typically: move

a,reg1; add reg1,b,c as most machines are limited to two memory operands.

• RISC — arithmetic instructions use registers only, so explicit 2-operand load/store

instructions are needed: load a,reg1; load b,reg2; add reg1+reg2->reg3; store

reg3,c; unlike 2-operand or 1-operand, this leaves all three values a, b, and c in

registers available for further reuse

• more operands—some CISC machines permit a variety of addressing modes that allow

more than 3 operands (registers or memory accesses), such as the VAX "POLY" polynomial

evaluation instruction.

Due to the large number of bits needed to encode the three registers of a 3-operand instruction,

RISC processors using 16-bit instructions are invariably 2-operand machines, such as the Atmel

AVR, the TI MSP430, and some versions of the ARM Thumb. RISC processors using 32-bit

instructions are usually 3-operand machines, such as processors implementing the Power

Architecture, the SPARC architecture, the MIPS architecture, the ARM architecture, and the

AVR32 architecture.

Each instruction specifies some number of operands (registers, memory locations, or immediate

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

3 | P a g e

values) explicitly. Some instructions give one or both operands implicitly, such as by being stored

on top of the stack or in an implicit register. If some of the operands are given implicitly, fewer

operands need be specified in the instruction. When a "destination operand" explicitly specifies

the destination, an additional operand must be supplied. Consequently, the number of operands

encoded in an instruction may differ from the mathematically necessary number of arguments

for a logical or arithmetic operation (the arity). Operands are either encoded in the "opcode"

representation of the instruction, or else are given as values or addresses following the

instruction.

Question 01 b): Answer:

Programming Language: Programming languages provide various ways of specifying programs

for computers to run. Unlike natural languages, programming languages are designed to permit

no ambiguity and to be concise. They are purely written languages and are often difficult to read

aloud. They are generally either translated into machine code by a compiler or an assembler

before being run, or translated directly at run time by an interpreter. Sometimes programs are

executed by a hybrid method of the two techniques. Programming language can be

Low-level languages or

Higher-level languages

Differences between low-level languages and higher-level languages:

High-Level Language Low-level language

It can be considered as a programmer-friendly
language.

It is considered as a machine-friendly
language.

It requires a compiler/interpreter to be
translated into machine code.

It requires an assembler that would translate
instructions.

It can be ported from one location to another. It is not portable.

It is easy to understand. It is difficult to understand.

It is easy to debug. It is difficult to debug.

It is less memory efficient, i.e., it consumes
more memory in comparison to low-level
languages.

It consumes less memory.

It can run on any platform. It is machine-dependent.

It is simple to maintain. It is complex to maintain comparatively.

It is used widely for programming. It is not commonly used now-a-days in
programming.

It is programmer friendly language. It is a machine friendly language.

High-level languages do not provide various
facilities at the hardware level.

Low-level languages are very close to the
hardware. They help in writing various
programs at the hardware level.

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

4 | P a g e

The process of modifying programs is very
difficult with high-level programs. It is
because every single statement in it may
execute a bunch of instructions.

The process of modifying programs is very
easy in low-level programs. Here, it can
directly map the statements to the processor
instructions.

Question 01 c): Answer:

Graphic 7 inches x 5 inches with 600dpi. Calculation given below for the amount of memory

required to store the graphic.

(7 x 600) x (5 x 600) = 4200 x 3000 pixels

= 12600000 pixels (÷ 8)

= 1575000 bytes (÷ 1024)

= 1538.08 Kb (÷ 1024)

= 1.5 Mb

So, we need 1.5 Mb of memory to store the graphic.

Question 02 a): Answer:

DMA Controller: Basically, for high speed I/O devices, the device interface transfer data directly

to or from the memory without informing the processor. When interrupts are used, additional

overhead involved with saving and restoring the program counter and other state information.

To transfer large blocks of data at high speed, an alternative approach is used. A special control

unit will allow transfer of a block of data directly between an external device and the main

memory, without continuous intervention by the processor.

DMA controller is a control circuit that performs DMA transfers, is a part of the I/O device

interface. It performs functions that normally be carried out by the processor. DMA controller

must increment the memory address and keep track of the number of transfers. The operations

of DMA controller must be under the control of a program executed by the processor. To initiate

the transfer of block of words, the processor sends the starting address, the number of words in

the block and the direction of the transfer. On receiving this information, DMA controller

transfers the entire block and informs the processor by raising an interrupt signal. While a DMA

transfer is taking place, the processor can be used to execute another program. After the DMA

transfer is completed, the processor can return to the program that requested the transfer.

• Three registers in a DMA interface are:

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

5 | P a g e

• Starting address

• Word count

• Status and control flag

A conflict may arise if both the processor and a DMA controller or two DMA controllers try to use

the bus at the same time to access the main memory. To resolve this, an arbitration procedure is

implemented on the bus to coordinate the activities of all devices requesting memory transfers.

Question 02 b): Answer:

Arithmetic logic unit: Short for Arithmetic Logic Unit, ALU is one of the many components within

a computer processor. The ALU performs mathematical, logical, and decision operations in a

computer and is the final processing performed by the processor. After the information has been

processed by the ALU, it is sent to the computer memory. In some computer processors, the ALU

is divided into two distinct parts, the AU and the LU. The AU performs the arithmetic operations

and the LU performs the logical operations.

Design of simple units of ALU: In ECL, TTL and CMOS, there are available integrated packages

which are referred to as arithmetic logic units (ALU). The logic circuitry in this units is entirely

combinational (i.e., consists of gates with no feedback and no flip-flops). The ALU is an extremely

versatile and useful device since, it makes available, in single package, facility for performing

many different logical and arithmetic operations.

 Arithmetic Logic Unit (ALU) is a critical component of a microprocessor and is the core

component of central processing unit.

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

6 | P a g e

ALU‘s comprise the combinational logic that implements logic operations such as AND, OR and

arithmetic operations, such as ADD, SUBTRACT. Functionally, the operation of typical ALU is

represented as shown in diagram below

Characteristics Of ALU: The ALU is responsible for performing all logical and arithmetic

operations.

- Some of the arithmetic operations are as follows: addition, subtraction, multiplication and

division.

- Some of the logical operations are as follows: comparison between numbers, letter and or

special characters.

- The ALU is also responsible for the following conditions: Equal-to conditions, Less-than

condition and greater than condition.

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

7 | P a g e

Question 02 c): Answer:

Note: According to the question paper there is a printing mistake because 5G.AB216 is not a valid

number. I already talked to Tithi ma’am and the question will be

Convert 5E.AB216 into an equivalent binary number. [page number 27, example 1.22]

Solution: The hexadecimal number given is 5 E.A B 2

4-bit binary equivalent

5 E A B 2

0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0

Hence the equivalent binary number is (01011110.101010110010)2

Table of Hex to Binary Number

Hex Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

8 | P a g e

Question 03 a): Answer:

Current Usage of Assembly Language: There have always been debates over the usefulness and

performance of assembly language relative to high-level languages. Assembly language has

specific niche uses where it is important; see below. But in general, modern optimizing compilers

are claimed to render highlevel languages into code that can run as fast as hand-written

assembly, despite the counterexamples that can be found. The complexity of modern processors

and memory sub-systems makes effective optimization increasingly difficult for compilers, as well

as assembly programmers. Moreover, and to the dismay of efficiency lovers, increasing processor

performance has meant that most CPUs sit idle most of the time, with delays caused by

predictable bottlenecks such as I/O operations and paging. This has made raw code execution

speed a non-issue for many programmers.

There are some situations in which developers might choose to use assembly language:

❖ A stand-alone executable of compact size is required that must execute without recourse to the

run-time components or libraries associated with a high-level language; this is perhaps the most

common situation. For example, firmware for telephones, automobile fuel and ignition systems,

air-conditioning control systems, security systems, and sensors.

❖ Code that must interact directly with the hardware, for example in device drivers and interrupt

handlers.

❖ Programs that need to use processor-specific instructions not implemented in a compiler. A

common example is the bitwise rotation instruction at the core of many encryption algorithms.

❖ Programs that create vectorized functions for programs in higher-level languages such as C. In the

higher-level language this is sometimes aided by compiler intrinsic functions which map directly

to SIMD mnemonics, but nevertheless result in a one-to-one assembly conversion specific for the

given vector processor.

❖ Programs requiring extreme optimization, for example an inner loop in a processorintensive

algorithm. Game programmers take advantage of the abilities of hardware features in systems,

enabling games to run faster. Also, large scientific simulations require highly optimized

algorithms, e.g. linear algebra with BLAS or discrete cosine transformation (e.g. SIMD assembly

version from x264)

❖ Situations where no high-level language exists, on a new or specialized processor, for example.

❖ Programs that need precise timing such as

• real-time programs such as simulations, flight navigation systems, and medical equipment. For

example, in a fly-by-wire system, telemetry must be interpreted and acted upon within strict time

constraints. Such systems must eliminate sources of unpredictable delays, which may be created

by (some) interpreted languages, automatic garbage collection, paging operations, or preemptive

multitasking. However, some higher-level languages incorporate run-time components and

operating system interfaces that can introduce such delays. Choosing assembly or lower-level

languages for such systems gives programmers greater visibility and control over processing

details.

• cryptographic algorithms that must always take strictly the same time to execute, preventing

timing attacks

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

9 | P a g e

Question 03 b): Answer:

Input/Output (I/O) instructions are used to input data from peripherals, output data to

peripherals, or read/write input/output controls. Early computers used special hardware to

handle I/O devices. The trend in modern computers is to map I/O devices in memory, allowing

the direct use of any instruction that operates on memory for handling I/O.

❖ IN Input; MIX; initiate transfer of information from the input device specified into

consecutive locations starting with M, block size implied by unit

❖ OUT Output; MIX; initiate transfer of information from consecutive locations starting with

M to the output device specified, block size implied by unit

❖ IOC Input-Output Control; MIX; initiate I/O control operation to be performed by

designated device

❖ JRED Jump Ready; MIX; Jump if specified unit is ready (completed previous IN, OUT, or

IOC operation); if jump occurs, J-register loaded with the address of the instruction which

would have been next if the jump had not been taken

❖ JBUS Jump Busy; MIX; Jump if specified unit is not ready (not yet completed previous IN,

OUT, or IOC operation); if jump occurs, J-register loaded with the address of the

instruction which would have been next if the jump had not been take

Question 03 c): Answer:

Different types of Registers: In computer architecture, a processor register is a small amount of

storage available as part of a CPU or other digital processor. Such registers are (typically)

addressed by mechanisms other than main memory and can be accessed more quickly. Almost

all computers, load-store architecture or not, load data from a larger memory into registers

where it is used for arithmetic, manipulated, or tested, by some machine instruction.

Manipulated data is then often stored back in main memory, either by the same instruction or a

subsequent one. Modern processors use either static or dynamic RAM as main memory, the

latter often being implicitly accessed via one or more cache levels. A common property of

computer programs is locality of reference: the same values are often accessed repeatedly and

frequently used values held in registers improves performance. This is what makes fast registers

(and caches) meaningful.

Processor registers are normally at the top of the memory hierarchy, and provide the fastest way

to access data. The term normally refers only to the group of registers that are directly encoded

as part of an instruction, as defined by the instruction set. However, modern high-performance

CPUs often have duplicates of these "architectural registers" in order to improve performance

via register renaming, allowing parallel and speculative execution. Modern x86 is perhaps the

most well-known example of this technique.

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

10 | P a g e

Allocating frequently used variables to registers can be critical to a program's performance. This

register allocation is either performed by a compiler, in the code generation phase, or manually,

by an assembly language programmer.

Categories of registers

Registers are normally measured by the number of bits they can hold, for example, an "8-bit

register" or a "32-bit register". A processor often contains several kinds of registers, that can be

classified accordingly to their content or instructions that operate on them:

❖ User-accessible registers – The most common division of user-accessible registers is into

data registers and address registers.

❖ Data registers can hold numeric values such as integer and floating-point values, as well

as characters, small bit arrays and other data. In some older and low-end CPUs, a special

data register, known as the accumulator, is used implicitly for many operations.

❖ Address registers hold addresses and are used by instructions that indirectly access

primary memory.

o Some processors contain registers that may only be used to hold an address or

only to hold numeric values (in some cases used as an index register whose value

is added as an offset from some address); others allow registers to hold either kind

of quantity. A wide variety of possible addressing modes, used to specify the

effective address of an operand, exist.

o The stack pointer is used to manage the run-time stack. Rarely, other data stacks

are addressed by dedicated address registers, see stack machine.

❖ Conditional registers hold truth values often used to determine whether some instruction

should or should not be executed.

❖ General purpose registers (GPRs) can store both data and addresses, i.e., they are

combined Data/Address registers and rarely the register file is unified to include floating

point as well.

❖ Floating point registers (FPRs) store floating point numbers in many architectures.

❖ Constant registers hold read-only values such as zero, one, or pi.

❖ Vector registers hold data for vector processing done by SIMD instructions (Single

Instruction, Multiple Data).

❖ Special purpose registers (SPRs) hold program state; they usually include the program

counter (aka instruction pointer) and status register (aka processor status word). The

aforementioned stack pointer is sometimes also included in this group. Embedded

microprocessors can also have registers corresponding to specialized hardware elements.

❖ Instruction registers store the instruction currently being executed.

❖ In some architectures, model-specific registers (also called machine-specific registers)

store data and settings related to the processor itself. Because their meanings are

attached to the design of a specific processor, they cannot be expected to remain

standard between processor generations.

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

11 | P a g e

❖ Control and status registers – There are three types: program counter, instruction

registers and program status word (PSW).

❖ Registers related to fetching information from RAM, a collection of storage registers

located on separate chips from the CPU (unlike most of the above, these are generally

not architectural registers):

o Memory buffer register (MBR)

o Memory data register (MDR)

o Memory address register (MAR)

o Memory Type Range Registers (MTRR)

o Hardware registers are similar, but occur outside CPUs.

Some examples

The table shows the number of registers of several mainstream architectures. Note that in x86-

compatible processors the stack pointer (ESP) is counted as an integer register, even though

there are a limited number of instructions that may be used to operate on its contents. Similar

caveats apply to most architectures.

x86 FPUs have 8 80-bit stack levels in legacy mode, and at least 8 128-bit XMM registers in SSE

modes.

Although all of the above listed architectures are different, almost all are a basic arrangement

known as the Von Neumann architecture, first proposed by mathematician John von Neumann.

Architecture Integer
Registers

FP
Registers

Notes

x86-16

x86-32

8

8

8

8

8086/8088, 80186/80188, 80286, with 8087, 80187 or
80287 for floating-point
80386 required 80387 for floating-point

x86-64 16 16

IBM/360
z/Architecture

16
16

4
16

Itanium 128 128 And 64 1-bit predicate registers and 8 branch registers.
The FP registers are 82 bit.

SPARC
IBM Cell
IBM POWER

31
4~16

32

32
1~1

32

Global register 0 is hardwired to 0. Uses register
windows.
Each SPE contains a 128-bit, 128-entry unified register
file.
And 1 link and 1 count register.

Power
Architecture

32 32 And 32 128-bit vector registers, 1 link and 1 count
register.

Alpha
6502

32
3

32
0

W65C816S 5
2

0

CSE-233 Computer Organization & Assembly Language Ruhul Amin ID: 2120180051

12 | P a g e

PIC
microcontroller
AVR
microcontroller
ARM 32-bit

1

32

16

0

0

Varies (up
to 32)

Of which, register r15 is the program counter and r8-r14
can be switched out for others (banked) on a processor
mode switch.

ARM 64-bit 31 32 In addition, register r31 is the stack pointer or hardwired
to 0

MIPS

Epiphany

31

64 (per
core)

32 Register 0 is hardwired to 0.

Each instruction controls whether registers are
interpreted as integers or single precision floating point.
16 or 64 cores.

